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ABSTRACT

Analysis of Multiple Collision-Based Periodic Orbits in Dimension Higher than One

Skyler C. Simmons
Department of Mathematics, BYU

Doctor of Philosophy

We exhibit multiple periodic, collision-based orbits of the Newtonian n-body problem. Many of
these orbits feature regularizable collisions between the masses. We demonstrate existence of the
periodic orbits after performing the appropriate regularization. Stability, including linear stability,
for the orbits is then computed using a technique due to Roberts. We point out other interesting
features of the orbits as appropriate. When applicable, the results are extended to a broader family
of orbits with similar behavior.

Keywords: Newtonian n-body problem, collision, regularization, stability, linear stability, Sitnikov
problem
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CHAPTER 1. INTRODUCTION

Mathematically, the study of determining the motion of n point masses in space whose motion

is governed by Newton’s gravitational law is known as the Newtonian n-body problem. Nota-

tionally, if {q1,q2, ...,qn} represent the positions of the bodies in Rk (k = 1,2, or 3) with masses

{m1,m2, ...,mn} respectively, then their motion is governed by the system of differential equations

miq̈i = ∑
i6= j

mim j(q j−qi)

|qi−q j|3
, (1.1)

where the dot represents the derivative with respect to time. Despite hundreds of years of study

and the relatively recent development of computer ODE solvers, many open questions about the

n-body problem remain.

Linearly stable symmetric periodic orbits are one aspect of the n-body problem. Recently,

Roberts [1] desribed an analytic-numerical method for determining the linear stability of a sym-

metric periodic orbit of a Hamiltonian system. He applied this method to the time-reversible

collision-free figure-eight orbit in the equal mass three-body problem numerically discovered by

Moore [2] and whose existence was proven by Chenciner and Montgomery [3]. (Other such chore-

ographic solutions, in which all bodies trace out the same curve in space with a time shift between

them, were found numerically by Simó [4].) Roberts’ method shows that the figure eight orbit

is linearly stable. The method uses the symmetries to factor a matrix similar to the monodromy

matrix for the periodic orbit into an integer power of the product of two involutions. One of the

two involutions depends on the linearized dynamics along only a part of the periodic orbit. For

the figure eight this part is one-tweltfth of the full orbit since it has a symmetry group isomorphic

to the group D3×Z2 of order 12. (Here the dihedral group Dk is the group of symmetries of the

regular k-gon.) The eigenvalues of the product of the two involutions are then reduced to the nu-

merical computation of a few real numbers. (This technique will be outlined and applied in many

examples in this work.)

One aspect of the n-body problem that has been getting much attention of late are orbits in-

1
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volving collision singularities. A collision singularity occurs when qi = q j for some i 6= j. In

the equations governing the motion, this results in a zero denominator in one or more terms in

the sum. Under certain conditions, these collisions can be regularized and the solutions can be

continued past collision. Binary collisions, triple collisions, etc., are discussed at length in [5] (see

especially Ch. 1, section 6). The Simultaneous Binary Collision (SBC) problem has been widely

studied as well, both analytically and numerically. Simó [6] showed that the block regularization

in the cases of the n-body problem which reduce to one-dimensional problems is differentiable,

but the map passing from initial to final conditions (in suitable choices of transversal sections) is

exactly C8/3. Ouyang and Yan [7] give another approach for the regularization and analyze some

properties of SBC solutions in the collinear four-body problem. Elbialy [8] studied the nature of

the collision-ejection orbits associated to SBC.

Schubart [9] numerically discovered a singular periodic orbit in the collinear equal mass three-

body problem. The orbit alternates between binary collisions. Hénon [10] extended Schubart’s

numerical investigations to the case of unequal masses. Venturelli [11] and Moeckel [12] proved

the existence of the Schubart orbit when the outer masses are equal and the inner mass is arbitrary.

Shibiyama [13] recently demonstrated the existence of the arbitrary-mass version. The linear sta-

bility of the Schubart orbit was determined numerically by Hietarinta and Mikkola [14] revealing

that linear stability occurs for some but not all of the choices of the three masses. Sweatman ([15]

and [16], see also [17]) numerically found and determined the linear stability of a Schubart-like

orbit in the symmetric collinear four-body problem with outer bodies having mass 1, and the inner

pair having mass m. This Schubart-like periodic orbit alternates between simultaneous binary col-

lisions (SBC) and inner binary collisions. Ouyang and Yan [18] proved the existence of this orbit.

In the regularized setting, this periodic orbit has a symmetry group isomorphic to D2, of which

both of the generators are time-reversing symmetries. The regularization of these singular periodic

orbits is achieved by a generalized Levi-Civita type transformation and an appropriate scaling of

time, as adapted from Aarseth and Zare [19]. (See also [20].) Non-Schubart-like linearly stable

periodic orbits in the collinear three-body problem were found by Saito and Tanikawa for certain

2
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choices of the masses [21], [22], [23].

Planar orbits with regularizable collisions have also been studied. Among the first of these is

the rhomboidal four-body orbit, which features two pairs of bodies: one pair on the x-axis and the

second on the y-axis. The pairs collide at the origin in an alternating fashion. This orbit was shown

to exist analytically in multiple independent papers (by Yan in [24] and Martinez in [25] for equal

masses, [13] for symmetric masses). Additionally, Yan showed that for equal masses, the orbit is

linearly stable.

Other planar orbits with singularities have also been studied. A planar four-body orbit featuring

simultaneous binary collisions was described in [26] (Chapter 4 of this work). The orbit was shown

to be linearly stable in [27] (Chapter 5). It was later shown that this orbit could be numerically

extended to symmetric masses in [28] (see also [29] and Chapter 6), and linear stability for this

extension was shown for an interval of certain mass ratios in [30] (Chapter 7).

A different planar orbit was discussed in [31] (also Chapter 8). This orbit is known as the

rhomboidal symmetric-mass orbit. This orbit itself is another solution of the Caledonian problem

(see, for example, [32] and [33]) which features regularized collisions between pairs of bodies. In a

separate study of the rhomboidal four-body problem, Waldvogel [34] notes that “sufficiently simple

systems may bear the chance of permitting theoretical advances,” and identifies the rhomboidal

problem as one such system.

More generally, analytic existence of many families of orbits with two degrees of freedom and

regularizable singularities was recently proven by Shibayama in [13] and Martinez in [25]. The

rhomboidal four-body orbit and the equal-mass planar SBC orbits are special cases of one of the

many orbits presented in each.

This work is a compilation of multiple results related to stable, periodic, collision-based orbits.

Specifically, each of Chapters 4 through 9 were published in various journals, and shed some light

on this problem as a whole. (As a historical note, the work corresponding to Chapters 4 through

6 was done during my undergraduate years at BYU. Chapter 7 was done while earning my MS,

and Chapters 8 and 9 were done during my time as a PhD student.) Although reasonable attempts

3
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to make the notation consistent have been made, it will be helpful to the reader to consider all

variables as re-defined at the beginning of each new chapter.

The remainder of the paper is as follows: In Chapter 2, we review some of the relevant prin-

ciples of the n-body problem, Hamiltonian systems, and stability theory. Chapter 3 demonstrates

some essential results from Roberts’ stability calculation technique, which will be used in multiple

instances. Chapters 4 through 7 are all results related to a symmetric, planar, four-body orbit that

were developed over a few years. Specifically, Chapter 4 establishes the existence of the orbit.

Chapter 5 demonstrates its linear stability. Chapter 6 shows the extension of the orbit beyond the

equal-mass case. Chapter 7 gives the linear stability in the extended case. Next, Chapter 8 gives

similar results for another orbit, called the rhomboidal orbit. It will be noted that much of the anal-

ysis in that chapter is much simpler than that of 4 - 7, due mostly to the relative simplicity of the

orbit considered. Lastly, Chapter 9 gives an interesting result that arose from considering the lim-

iting (m→ 0) case of the rhomboidal orbit in Chapter 8. This result provides a connection between

the rhomboidal orbit and the so-called Sitnikov problem, which will be introduced in Chapter 9.

4
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CHAPTER 2. BACKGROUND

2.1 THE n-BODY PROBLEM

In the Principia Mathematica [35], published in 1687, Newton outlined many governing principles

of the motion of physical objects. Among the most well-known are his three laws of motion.

Explicitly, we have

1. An object in motion will remain in motion unless acted upon by an outside force. An object

at rest will remain at rest unless acted upon by an outside force.

2. Force equals mass times acceleration, or F = ma.

3. To every action there is an equal and opposite reaction.

Furthermore, Newton’s law of universal gravitation states that for two objects of mass m1 and m2

separated by a distance r, the force due to gravity between them is given by

Fgrav =
Gm1m2

r2 ,

where G is some constant depending on the units chosen. In SI units, with r in meters, mi in

kilograms, and Fgrav in Newtons, G has the value 6.673×10−11 N(m/kg)2.

In the n-body problem, we consider an isolated system of n point masses with mass mi in Rd .

Most often, d = 2 or 3. Assuming that gravity is the sole force acting on the particles, combining

the laws F = ma with the law of universal gravitation gives a system of differential equations that

govern the motion of the particles. Specifically, if qi represents the position of the ith particle, then

its acceleration is q̈i, where the dot represents the derivative with respect to time. The force due to

gravity is simply the sum of the gravitational forces exerted by the remaining bodies:

Fi = ∑
i 6= j

mim j

|qi−q j|2
,

5
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where units are chosen so that G = 1. Since Fi = miq̈i, and qi is a vector quantity, we then have

miq̈i = ∑
i 6= j

mim j

|qi−q j|2

(
(q j−qi)

|qi−q j|

)
= ∑

i6= j

mim j(q j−qi)

|qi−q j|3
, (2.1)

where the extra terms constitute a unit vector in the direction from the ith point mass to the jth point

mass. This is then a system of nd second-order differential equations. The standard technique is to

split this further into a system of (2×n×d) first-order differential equations by introducing a new

set of variables pi that are related to the quantities q̇i. In the n-body problem, this is traditionally

done by

q̇i =
pi

mi
, ṗi = ∑

i 6= j

mim j(q j−qi)

|qi−q j|3
.

Physically, the new variables pi give the momentum of the point masses, and the quantity pi/mi is

the velocity.

2.2 HAMILTONIAN DYNAMICS

A Hamiltonian System is a system of 2n differential equations that arise from a function (called a

Hamiltonian) of the form H(q1, ...,qn, p1, ..., pn). The variables qi and pi evolve according to the

ODEs
dqi

dt
=

∂H
∂pi

,
d pi

dt
=−∂H

∂qi
.

The function H is called the Hamiltonian for the resulting system of differential equations. For the

n-body problem, if we define functions K and U by

K =
n

∑
i=1

p2
i

2mi
U = ∑

i 6= j

mim j

|q j−qi|
,

setting H = K +U gives the n-body problem as a Hamiltonian system. Note that K here is simply

the sum of terms of the form mv2/2, the familiar equation for kinetic energy from physics. Simi-

larly, U is the potential energy for the system, which is only dependent upon masses and positions.

6
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Mathematically, this gives differential equations q̇i and ṗi which depend only upon qi and pi.

It may be the case that the function H depends on quantities other than qi and pi. The most

common extra non-constant quantity is time. In this case, we may still take the same partial

derivatives as above, and the resulting derivatives for qi and pi will also depend upon time. In

this circumstance, we say we have a time-dependent Hamiltonian system. This will be the case in

Chapter 9.

Hamiltonian systems, time-dependent or not, have a number of highly desirable and useful

properties. The most relevant will be explained in the following sections.

2.3 CONSERVED QUANTITIES

Let H(qi, pi) generate a Hamiltonian system. Then there are a number of time-invariant quantities,

called first integrals, for the resulting system. The first of these is H itself. This is easy to show, as

dH
dt

=
n

∑
i=1

∂H
∂qi

∂qi

∂t
+

∂H
∂pi

∂pi

∂t

=
n

∑
i=1

∂H
∂qi

∂H
∂pi
− ∂H

∂pi

∂H
∂qi

= 0.

Note that this is true for Hamiltonian systems in general, so long as they are not time-dependent.

The remaining fixed quantities apply specifically to the n-body problem. Using the same notations

as in Section 2.2, there are three extra first integrals:

1. Net momentum: ∑
n
i=1 pi,

2. Center of mass: ∑
n
i=1 miqi,

3. Angular momentum: ∑
n
i=1 mi(qi× q̇i).

7
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(For angular momentum, when working in R2, simply treat each point as a vector in R3 with zero

z component.) Evaluating the derivative for net momentum, we get

n

∑
i=1

ṗi =
n

∑
i=1

∑
i6= j

mim j(q j−qi)

|qi−q j|3
.

Each of these terms cancels in pairs, as the q j − qi term is precisely the negative of the qi− q j

term, which occurs when the values of i and j are reversed in the summations. Hence, the net

momentum for the system is constant. If we assume that the net momentum is zero (which is

physically sensible from a proper reference frame), we can then show that

n

∑
i=1

miq̇i =
n

∑
i=1

pi = 0,

so the center of mass is constant as well. (In practice, this is often set to be at the origin.) The

angular momentum can be similarly evaluated, and results in positive and negative versions of the

same terms appearing in a summation, similar to the evaluation of net momentum. (We omit the

lengthy calculations here.) It can also be shown (see Chapter 5 of [5], also [36]) that there are no

additional algebraic integrals of the n-body problem. More specifically, there are no other simple

algebraic expressions whose derivatives are zero.

2.4 CHANGE OF VARIABLES

It is common practice to introduce a change of variables when studying the n-body problem that are

more natural to the system being studied. In particular, exploiting the above conserved quantities

can reduce the number of equations that need to be studied. Changing the variables being used also

requires a change in the equations as well. As a simple example, consider the differential equation

ẏ = y.

8
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If we make the change of variables x = y3, then we have (after solving for x)

ẋ = (dx/dy)(dy/dt) = (3y2)(y) = 3y3 = 3x.

More complicated changes of variables (e.g. involving multiple variables) follow along the same

line, but involve more algebra.

An important class of variable transformations in Hamiltonian systems is the class of canoni-

cal transformations. These are transformations that preserve a Hamiltonian structure. Namely, if

H(qi, pi) is a Hamiltonian system, and Qi = Qi(qi, pi) and Pi = Pi(qi, pi) is a coordinate transfor-

mation, then the transformation is canonical if

Q̇i =
∂H(Qi,Pi)

∂Pi
, Ṗi =−

∂H(Qi,Pi)

∂Qi
.

It may be the case that the value of H(qi, pi) and H(Qi,Pi) are different for corresponding points.

In this case, there is some number ε for which H(qi, pi) = εH(Qi,Pi) for all time. Then the trans-

formation is called canonical with multiplier ε. When ε = 1, the transformation is usually simply

referred to as canonical.

Canonical transformations themselves arise from taking derivatives of other functions, called

generating functions. If F is a function of 2n variables F(qi,Pi) with Qi(qi, pi) = ∂F/∂Pi and

pi(Qi,Pi) = ∂F/∂qi, then the resulting change of variables is canonical. The coordinates can then

be transformed when the equations for Qi have been inverted. (Full details of this, in terms of

symplectic forms, is given in Chapter 6 of [37].)

2.5 COLLISIONS AND REGULARIZATION

A collision singularity of the n-body problem occurs at a time when qi = q j for some i 6= j. This

causes a zero-denominator to appear in Equation 2.1. Physically, this corresponds to a collision of

two (or more) of the point masses at some point in space. (The term collision singularity is used as

there are other types, called non-collision singularities, which will not be discussed in this work.

9
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The work by Xia [38] is the chief example.)

It is possible to regularize certain collisions in the n-body problem so that the system can

be continued past collision. Regularization involves a change of spatial (qi and pi) variables, as

well as a re-scaling of time that results in the velocity at collision being finite. Under appropriate

regularizations, the behavior of the bodies before and after collision corresponds to a perfectly

elastic bounce.

A standard technique for regularization of collisions involving two bodies (the so-called binary

collision) is given by Levi-Civita in [39] and has been modified by many since then. The particular

details of the coordinate transformations depend on the orbit being studied.

As a simple example, consider the two-body collinear configuration with two bodies of mass 1

located at (±q,0). Their conjugate momenta is given by p = 2q̇. The Hamiltonian in this setting

is then given by

H =
1
4

p2− 1
2q

.

Collisions at the origin can be regularized via

q = Q2, P = 2qp.

This is a canonical transformation arising from the generating function F =
√

qP. Hence,

Q =
∂F
∂P

=
√

q and p =
∂F
∂q

=
P

2
√

q
.

Solving for p and substituting yields

H̃ =
1
4

(
P2

4Q2

)
− 1

2Q2

=
P2

16Q2 −
1

2Q2 .

Since the change of variables was canonical, H̃ still yields a Hamiltonian system. Consequently,

the value of H̃ is some fixed constant E, which can be determined after initial conditions have been

10
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chosen. Then the value of H̃−E is zero along the orbit. The Hamiltonian function H̃ is defined

at all points except those for which Q = q = 0, namely, collision at the origin. The final step in

regularization is to introduce a new time variable s that dynamically depends upon the conditions

in the orbit. In this case, clearing the Q2 terms in the denominator would remove the singularity,

so we define s to satisfy dt/ds = Q2. Then the final regularized Hamiltonian is denoted Γ and is

given by

Γ =
dt
ds

(H̃−E)

= Q2
(

P2

16Q2 −
1

2Q2

)
−E

=
P2

16
− 1

2
−Q2E.

Note that at collision (Q = 0), assuming Γ = 0, we find P =
√

8. The collision has therefore been

regularized as claimed, and the point Q = 0 does not correspond to an equilibrium point. Thus the

orbit continues past the collision.

Introducing the quantities E and s into the Hamiltonian Γ equation yields extended phase space,

which is an extension of the original phase space defined by qi and pi that includes the extra

variables E and s. (Concretely, this is the space R2n×R2, where R2n is spanned by {qi}, {pi}, and

E and s yield R2.) Moreover, this new system can also be considered as Hamiltonian, as

dE
dt

= 0,
ds
dt

=−∂Γ

∂E
.

2.6 POINCARÉ SECTIONS

Let φ(t,x0) : R×Rn 7→ Rn denote the solution to a system of differential equations at time t with

initial conditions x0. Let Σ be a subset of Rn of dimension n− 1. (For simplicity, this may be

considered to be a linear subspace, as will be the case in this work.) Let ρ : Σ→ Σ be given by

ρ(x0) = φ(τ(x0),x0),

11
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where τ(x0) is the smallest value of t > 0 for which φ(t,x0) ∈ Σ if such a t exists. (If no such

time exists, then ρ is undefined.) In other words, to find the image of ρ(x0), simply take the initial

conditions at x0 and evolve them according to the differential equations until Σ is crossed again.

Then ρ is called the return map, and Σ is called a Poincaré Section. This introduces a discretized

version of the differential equation flow and is often useful for qualitatively describing certain

global behaviors of the system.

If x0 is a point on a periodic orbit, then ρn(x0) = x0 for some n ∈N. If care is taken in choosing

the section, then n = 1. Moreover, ρ is a continuous map, as both the flow and the return time are

continuous functions in x0 by standard arguments.

For many of the examples that will be presented in this work, the differential equations will be

given by a Hamiltonian system H(q1,q2, p1, p2). Given initial values for the variables q1, q2, p1,

and p2, the constant value of H for the entire orbit can be determined. Since H is constant and

known, then one of these four variables can be written in terms of the other three. Hence, we may

consider the resulting system of non-independent differential equations on R3. Poincaré sections

are then two-dimensional slices (often planes or half-planes) of R3.

One important property of a Poincaré section in a Hamiltonian system is that ρ preserves the

Lebesgue measure of sets on Σ.

2.7 STABILITY, STABILITY, STABILITY, AND STABILITY

Let O(x0) denote the orbit (set of all points under forward and reverse time) of the point x0 in

a given system of differential equations, and φ(t,y0) the point on the solution to the differential

equation at time t with initial condition y0 as before. Suppose that x0 is a point on a periodic orbit

(perhaps a fixed point). Then O(x0) is a (perhaps trivial) closed loop. There are multiple notions of

stability for this periodic orbit. The general idea of stability is that orbits that start close (in terms

of initial conditions as points in phase space) should stay close as time progresses.

The orbit O(x0) is called asymptotically stable if there is an open set U about x0 such that if

y0 ∈U , then the distance d(φ(t,y0),O(x0))→ 0 as t→ ∞. (Here, d(·, ·) denotes the distance.) An

12
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important distinction of asymptotic stability is that we only consider forward time. It is usually

the case that asymptotically stable orbits do not satisfy this relation in reverse time. In the case of

Hamiltonian systems, preservation of area by ρ implies that a periodic orbit cannot be asymptoti-

cally stable.

The orbit O(x0) is called Lyapunov stable if for any ε> 0 there is a δ> 0 so that if d(x0,y0)< δ,

then d(φ(t,y0),φ(t,x0))< ε for all t, not strictly positive t.

The orbit O(x0) is called Poincaré stable if for any ε > 0 there is a δ > 0 so that if d(x0,y0)< δ,

then d(φ(t,y0),O(x0)) < ε for all t, not strictly positive t. (Here, the distance is taken to be the

minimum difference between the point and the compact set O(x0), where again x0 is a point on a

periodic orbit.) By definition, any Lyapunov stable orbit is automatically Poincaré stable.

Some examples will help to distinguish the multiple definitions. To begin, the simple au-

tonomous system y′ =−y has the stationary orbit y = 0 is stable in forward time (all solutions are

of the form y = ce−t), but this is not Lyapunov stable or Poincaré stable as reverse-time solutions

diverge away from 0.

On the other hand, consider the system given in polar coordinates by

ṙ = 0, θ̇ = f (r),

where f (r) is some monotonically non-decreasing function. Then each point belongs to some

periodic orbit, as all orbits are circles about the origin. Certainly the origin is not asymptotically

stable, as no point’s forward trajectory moves it closer to the origin. If f (r) = 1, then any point

orbits in 2π time, as the system corresponds to rigid rotation of the plane. So any orbit is both

Lyapunov stable and Poincaré stable. On the other hand, if f (r) = r, then a point on the r = r0

circle returns to its initial position in 2π/r0 time. Each constant r circle still remains close to other

nearby circles, so this system is still Poincaré stable. However, the system is not Lyapunov stable:

Let x and y be any two distinct points on the line θ = θ0 for some θ0. If rx and ry are the radii of the

circles on which those points lie, then at time t0 = π/|rx− ry|, the θ values of φ(t0,x) and φ(t0,y)

differ by π. Since x and y can be made arbitrarily close, the system cannot be Lyapunov stable, as

13
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no δ can guarantee that a point δ-close to x will remain in a ball of radius rx/2 about x.

Most often in celestial mechanics (and certainly in this work) when we refer to “stability” we

will refer to Poincaré stability. There is an important connection between Poincaré stability and

Poincaré sections. Specifically, if x0 is a fixed point on a 2-dimensional Poincaré section Σ in R3,

and there are is a closed loop Sε lying within a distance ε of x0 on Σ such that ρ(Sε) = Sε, then

the image of Sε in the ambient space forms a closed torus, separating R3 into an “interior” and

“exterior”. By uniqueness of solutions to ODEs, it must then be the case that an orbit which starts

within that torus remains in that torus. If such a loop exists for each ε > 0, then the orbit containing

x0 is Poincaré stable.

Verifying the existence of such loops for a general map is quite difficult, and depends on certain

number-theoretic properties. Without loss of generality, suppose (0,0) is a fixed point of a map

R2 → R2 by (x,y) 7→ ( f (x,y),g(x,y)), where f and g are analytic functions expressed as power

series. Then certain technical conditions must be satisfied by the coefficients of the power series

expansions for both f and g in order for these loops to exist. The full details of this are given in

[5].

There is one additional type of stability, called linear stability, that is a necessary but insuffi-

cient condition for Poincaré stability. This depends only on the eigenvalues of the linearized map

given by f and g. Linear stability, however, is verifiable numerically. Moreover, the numerical

calculation can be made rigorous due to some results of Roberts (see [1]). The specifics of linear

stability will be discussed shortly.

2.8 SYMPLECTIC MATRICES

Let J be the 2n×2n matrix

J =

 0 I

−I 0

 ,
where I and 0 denote the n× n identity and zero matrices, respectively. It is straightforward to

show that J−1 = JT = −J. This matrix arises frequently in Hamiltonian systems. In particular, if
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H is a Hamiltonian function, and

γ = (q1, ...,qn, p1, ..., pn)
T ,

then the system can be written as

γ
′ = JDH(γ),

where DH(γ) represents the vector of partial derivatives of H evaluated at γ.

A 2n×2n matrix A is called symplectic if AT JA = J. If AT JA = µJ, then A is called symplectic

with multiplier µ. Since J is non-singular, any symplectic matrix A is also non-singular. Also, it

can be shown (see [37]) that if A is symplectic and

A =

A11 A12

A21 A22

 ,
where each Ai j is an n×n block then

A−1 =

 AT
22 −AT

12

−AT
21 AT

11

 .
Suppose A is a symplectic matrix with eigenvalue λ and eigenvector η = [ηT

1 ηT
2 ]

T , where η1

and η2 are n-element column vectors. That is to say,

A

η1

η2

= λ

η1

η2

 .
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Then, since AT JA = J, we have

AT JA

η1

η2

= J

η1

η2


AT Jλ

η1

η2

=

 η2

−η1


AT

λ

 η2

−η1

=

 η2

−η1

 ,
AT

 η2

−η1

=
1
λ

 η2

−η1

 ,
and so 1/λ is also an eigenvalue for A. Consequently, real eigenvalues of A come in reciprocal

pairs, and complex eigenvalues of A come in complex “quartets”.

2.9 LINEAR STABILITY

Let X(t) be a fundamental matrix solution to

ξ
′ = JD2H(γ)ξ,

where γ is a T -periodic solution to the Hamiltonian system (e.g. each component of γ is T -

periodic), and X(0) = I. Then the matrix X(T ) is symplectic, and is called the monodromy matrix

for the orbit γ. The linear stability of γ is determined by the eigenvalues of X(T ). Each conserved

quantity from Section 2.3 results in X(T ) having an eigenvalue equal to 1. The orbit γ is linearly

stable if X(T ) has all eigenvalues of modulus 1 and the only repeated eigenvalues are those result-

ing from these conserved quantities. As mentioned in Section 2.7, linear stability is necessary for

Poincaré stability. The proof of this is lengthy (see [5]).
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2.10 SYMMETRIES

Let γ be a T -periodic orbit of some (not necessarily Hamiltonian) system of differential equations,

and let S be a matrix. Then S is said to be a time-preserving symmetry of γ if there exists some

0 < t0 < T such that Sγ(t) = γ(t + t0) for all t. On the other hand, S is called a time-reversing

symmetry of γ if there exists some 0 < t0 < T such that Sγ(t) = γ(t0− t) for all t.

As a simple example, let

γ =

sin(t)

cos(t)

 ,
and let

S1 =

1 0

0 −1

 .
Then it holds that

γ(π− t) =

sin(π− t)

cos(π− t)

=

 −sin(t)

−cos(π− t)

= S1γ,

and so S1 is a time-reversing symmetry for γ. Similarly,

S2 =

0 1

1 0


satisfies γ(π/2− t) = S2γ, and so S2 is another time-reversing symmetry for γ. An outstanding

conjecture by Roberts (see [40]) states that any linearly stable periodic orbit of the n-body problem

must have a time-reversing symmetry.
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CHAPTER 3. ROBERT’S SYMMETRY-REDUCTION TECHNIQUE

We will make frequent use of a technique developed by Roberts to aid in our evaluation of linear

stability for various periodic orbits. The material in this chapter is all given by Roberts in [1] and is

duplicated here for reference and convenience. The first four results involve solutions to the matrix

differential equation

ξ̇ = JD2H(γ)ξ (3.1)

with various initial conditions.

Lemma 3.1. Suppose that γ(t) is a T -periodic solution of a Hamiltonian system with Hamiltonian

H and symmetry matrix S such that

1. For some N ∈ N, γ(t +T/N) = Sγ(t) for all t,

2. H(Sx) = H(x),

3. SJ = JS,

4. S is orthogonal.

Then the fundamental matrix solution X(t) to (3.1) with ξ(0) = I satisfies

X(t +T/N) = SX(t)ST X(T/N).

(Here, ST means the transpose of S.)

Proof. Let A = X(T/N), Y (t) = X(t +T/N), and Z(t) = SX(t)ST X(T/N). Consider the differen-

tial equation

ξ̇ = SJD2H(γ(t))ST
ξ, ξ(0) = A. (3.2)

Then

Ẏ = Ẋ(t +T/N) = JD2H(γ(t +T/N))X(t +T/N) = SJD2H(γ(t))STY (t)

18
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by properties 1-3 of S. On the other hand,

Ż = SJD2H(γ(t))X(t)ST A = SJD2H(γ(t))ST Z(t)

using the fact that S is orthogonal. Thus both Y (t) and Z(t) satisfy (3.2) with the same initial

condition Y (0) = Z(0) = A. By uniqueness, Y (t) = Z(t) as required.

Corollary 3.2. Under the hypotheses of Lemma 3.1, the fundamental matrix solution X(t) satisfies

X(kT/N) = Sk(ST X(T/N))k

for any k ∈ N.

Proof. This follows from Lemma 3.1 by induction on k.

Alternate initial conditions can also be considered. If Y (t) is the fundamental matrix solution

to (3.1) with ξ(0) = Y0, a similar argument shows that

Y (t +T/N) = SY (t)Y−1
0 STY (T/N)

and so

Y (kT/N) = SkY0(Y−1
0 STY (T/N))k.

The reason for considering these alternate initial conditions as follows: If Y is the fundamental

matrix solution of

ξ
′ = JD2

Γ(γ(s))ξ, ξ(0) = Y0 (3.3)

for some invertible matrix Y0, then by definition of X(s), Y (s)=X(s)Y0, implying X(T )=Y (T )Y−1
0 .

Then we have

X(T ) = Y (T )Y−1
0 = Y0(Y−1

0 Y (T ))Y−1
0
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and so X(T ) and Y−1
0 Y (T ) are similar, and linear stability can be determined by the eigenvalues of

either.

Lemma 3.3. Suppose that γ(t) is a T -periodic solution of a Hamiltonian system with Hamiltonian

H and symmetry matrix S such that

1. For some N ∈ N, γ(−t +T/N) = Sγ(t) for all t,

2. H(Sx) = H(x),

3. SJ = JS,

4. S is orthogonal.

Then the fundamental matrix solution X(t) to 3.1 with ξ(0) = I satisfies

X(−t +T/N) = SX(t)ST X(T/N). (3.4)

Proof. Let A = X(T/N), Y (t) = X(−t +T/N), and Z(t) = SX(t)ST X(T/N). Consider the differ-

ential equation

ξ̇ = SJD2H(γ(t))ST
ξ, ξ(0) = A. (3.5)

Then

Ẏ = Ẋ(−t +T/N) =−JD2H(γ(−t +T/N))X(−t +T/N) = SJD2H(γ(t))STY (t)

by properties 1-3 of S. On the other hand,

Ż = SJD2H(γ(t))X(t)ST A = SJD2H(γ(t))ST Z(t)

using the fact that S is orthogonal. Thus both Y (t) and Z(t) satisfy (3.2) with the same initial

condition Y (0) = Z(0) = A. By uniqueness, Y (t) = Z(t) as required.
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Corollary 3.4. Under the hypotheses of Lemma 3.3, the fundamental matrix solution X(t) satisfies

X(T/N) = SB−1ST B

where B = X(T/2N).

Proof. Evaluating (3.4) at = T/2N gives B = SBST X(T/N). Solving for X(T/N) gives the result.

Alternate initial conditions can also be considered. If Y (t) is the fundamental matrix solution

to (3.1) with ξ(0) = Y0, a similar argument shows that

Y (−t +T/N) = SY (t)Y−1
0 STY (T/N)

and so

Y (T/N) = SY0B−1ST B

where B = Y (T/2N).

An appropriate choice of Y0 and applications of Corollaries 3.2 and 3.4 allow the monodromy

matrix to be written as a power of a another matrix W , which itself is a product of powers of Y0, S,

B, Y (T/N) for various N, and their inverses. The particular form of this product varies depending

on the system being studied. Specific details will be discussed later with the accompanying orbits.

A particular form of W helps in performing the stability analysis.

Lemma 3.5. Suppose W is a symplectic matrix that satisfies

1
2
(W +W−1) =

KT 0

0 K

 . (3.6)

Then W has all eigenvalues on the unit circle if and only if all the eigenvalues of K are real and in

the interval [−1,1].
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Proof. Suppose that v is an eigenvector for W with eigenvalue λ. Then

1
2
(W +W−1)v =

1
2
(λ+λ

−1)v

from which it follows that 1
2(λ+λ−1) is an eigenvalue of K. Note that the map f : C→ C given

by f (λ) = 1
2(λ+λ−1) takes the unit circle onto the real interval [−1,1] while mapping the exterior

of the unit disk homeomorphically onto C\ [−1,1].

Suppose that all eigenvalues of K lie in the real interval [−1,1]. If W has an eigenvalue λ of

modulus other than 1, then either λ or 1/λ has modulus greater than 1. But then K would have an

eigenvalue outside of [−1,1].

On the other hand, let µ be an eigenvalue of K. Then ku = µu implies that

1
2
(W +W−1)

0

u

= µ

0

u

 .
Therefore µ is an eigenvalue of 1

2(W +W−1) and so must be real and in [−1,1].

Appropriate choices of Y0 and applications of Lemmas 3.1-3.5 allow the monodromy matrix of

a periodic solution to then be evaluated by evaluating the eigenvalues of K. This is highly desirable

numerically, as determining if the real eigenvalues of K lie in an interval is much more feasible

than proving that a complex number has modulus exactly equal to 1.
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CHAPTER 4. THE EQUAL-MASS PLANAR ORBIT

In this chapter, we present the analytic existence of a family of singular symmetric periodic planar

orbits in the four-body equal mass problem. The initial conditions of these orbits are symmetric in

both positions and velocities, which lead to periodic simultaneous binary collisions with each of the

four masses alternating between collisions with its two nearest neighbors. Due to the abundance

of symmetries present in the initial conditions, we can reduce the number of variables needed to

just four – two for representing position and two for representing momentum. In contrast to its

one-dimensional counterparts (see [7] and [18]), the proof for existence of this orbit is surprisingly

simple. We begin in Section 4.1.1 by giving a description of the proposed orbit and prove its

existence. In Section 4.1.2 we present the numerical methods used to produce the initial conditions

that will lead to this orbit. In Section 4.2, we consider variants on this orbit, giving a family of

orbits with singularities for an even number of equal masses.

The results presented in this chapter were originally published as [26].

4.1 THE PROPOSED ORBIT

4.1.1 Analytical Description. We focus on finding a symmetric, periodic SBC orbit for four

equal masses in two dimensions. After appropriate rescaling, we assume that the orbit begins with

the four bodies lying at (±1,0) and (0,±1) with initial velocities (0,±v) and (±v,0), respectively,

where v ∈ (0,+∞). For convenience throughout the rest of the chapter, we number the bodies 1 to

4 as in Figure 4.1.

Due to the symmetry of the initial conditions and the equations governing the motion of the

bodies, the symmetry that is present in the initial conditions is maintained for all time.

Theorem 4.1 (Main Theorem). Let E = K−U be the total energy and m be the mass for each of

the four bodies. For any E < 0 and m > 0, there exists a symmetric, periodic, four-body orbit with

SBC in R2, as pictured in Figure 4.1.

By an appropriate rescaling of units, we can assume m = 1 and the initial positions are as
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Figure 4.1: On the left, we illustrate the initial conditions leading to the four-body two-dimensional
periodic SBC oribt. On the right, the orbit is shown. The darker curves show the orbit of the first
and third bodies, and the lighter curves show the orbit of the second and fourth.

illustrated in Figure 4.1. The proof of existence will be given at the end of this section.

Let t0 be the time of first SBC. For t ∈ [0, t0), let the coordinate of body 1 be (x1,x2). By sym-

metry, the coordinates of bodies 2, 3, and 4 are (x2,x1), (−x1,−x2) and (−x2,−x1), respectively.

Using equation (2.1), the acceleration of a body at point (x1,x2) is given by:

(ẍ1, ẍ2) =−
[
(x1− x2,x2− x1)

(2(x1− x2)2)
3
2

+
(2x1,2x2)

(4x2
1 +4x2

2)
3
2
+

(x1 + x2,x1 + x2)

(2(x1 + x2)2)
3
2

]
(4.1)

We now perform the regularization of the system. The system has the Hamiltonian:

H =
1
8
(w2

1 +w2
2)−

√
2

x1− x2
−
√

2
x1 + x2

− 1√
x2

1 + x2
2

(4.2)

where w1 = 4ẋ1 and w2 = 4ẋ2 are the conjugate momenta to x1 and x2. Note that SBC happens
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when x1 =±x2. We introduce a new set of coordinates:

q1 = x1− x2, q2 = x1 + x2.

Their conjugate momenta pi are given by using a generating function F =(x1−x2)p1+(x1+x2)p2:

w1 = p1 + p2, w2 = p2− p1.

The Hamiltonian corresponding to the new coordinate system is

H =
1
4
(p2

1 + p2
2)−
√

2
q1
−
√

2
q2
−

√
2√

q2
1 +q2

2

. (4.3)

Following the work of Sweatman [15], we introduce another canonical transformation:

qi = Q2
i , Pi = 2Qi pi (i = 1,2)

with Qi > 0. We also introduce a new time variable s, which satisfies dt
ds = q1q2 = Q2

1Q2
2. This

produces a regularized Hamiltonian in extended phase space:

Γ =
dt
ds

(H−E)

=
1
16

(P2
1 Q2

2 +P2
2 Q2

1)−
√

2(Q2
1 +Q2

2)−
√

2Q2
1Q2

2√
Q4

1 +Q4
2

−Q2
1Q2

2E (4.4)

where E is the total energy of the Hamiltonian H.

The regularized Hamiltonian gives the following differential equations of motion:

Q′1 =
1
8

P1Q2
2, (4.5)

Q′2 =
1
8

P2Q2
1, (4.6)
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P′1 =−
1
8

P2
2 Q1 +2

√
2Q1 +

2
√

2Q1Q2
2√

Q4
1 +Q4

2

−
2
√

2Q5
1Q2

2

(Q4
1 +Q4

2)
3
2
+2EQ1Q2

2, (4.7)

P′2 =−
1
8

P2
1 Q2 +2

√
2Q2 +

2
√

2Q2Q2
1√

Q4
1 +Q4

2

−
2
√

2Q5
2Q2

1

(Q4
1 +Q4

2)
3
2
+2EQ2Q2

1, (4.8)

with initial conditions

Q1(0) = 1, Q2(0) = 1, P1(0) =−4v, P2(0) = 4v, (4.9)

where derivatives are with respect to s, and E is the total energy of the Hamiltonian H.

Theorem 4.2. Let s0 be the time of the first SBC in the regularized system. Then s0 is a continuous

function with respect to the initial velocity v. Furthermore,

p2(t0) =
P2(s0,v)

2Q2(s0,v)

is also continuous with respect to v.

Proof. At the first SBC, Q1(s0) = 0, and Q2(s0) =
√

q2 =
√

x1 + x2 > 0. Our goal is to show that

p2(t0) is a continuous function with respect to v.

Because Γ = 0 at s = s0, P1(s0) = −4 4
√

2 from (4.4). Since Γ is regularized, the solution

Pi = Pi(s,v) and Qi = Qi(s,v) are continuous functions with respect to the two variables s and v.

At time s = s0,

0 = Q1(s0(v),v).

To apply the implicit function theorem, we need to show that

∂Q1

∂s
(s0,v) 6= 0.
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From (4.5)
∂Q1

∂s
(s0,v) =

1
8

P1Q2
2 |(s0,v)=−

1
2

4√2Q2(s0)
2 < 0.

So s0 = s0(v) is a continuous function of v. Therefore both P2(s0,v) and Q2(s0,v) are continuous

functions of v. Further, since Q2(s0,v)> 0, p2(t0) is also a continuous function of v.

Theorem 4.3. There exists a v = v0 such that ẋ1(t0)+ ẋ2(t0) = 1
2 p2(t0) = 0, where t0 is the time of

the first SBC, i.e. the net momentum of bodies 1 and 2 at the first SBC is 0.

The outline of this proof is as follows: We will show that there exist v1 and v2 such that ẋ1+ ẋ2

is negative at SBC for v = v1 and positive at SBC for v = v2. The result then follows by Theorem

4.2.

Proof. Consider Newton’s equation before the time of the first SBC:

ẍ1 =
x2− x1

2
√

2(x1− x2)3
− 2x1

8(x2
1 + x2

2)
3/2 −

x1 + x2

2
√

2(x1 + x2)3
, (4.10)

ẍ2 =
x1− x2

2
√

2(x1− x2)3
− 2x2

8(x2
1 + x2

2)
3/2 −

x1 + x2

2
√

2(x1 + x2)3
. (4.11)

Therefore,

ẍ1 + ẍ2 =−
x1 + x2

4(x2
1 + x2

2)
3/2 −

1√
2(x1 + x2)2

< 0, (4.12)

which means ẋ1 + ẋ2 is decreasing with respect to t.

At the initial time t = 0, x1 = 1, x2 = 0, ẋ1 = 0, and ẋ2 = v. Note that for v ∈ (0,∞), there is

no triple collision or total collision for t ∈ [0, t0], where t0 is the time of the first SBC, as a triple

collision implies total collapse by symmetry. Also, from the initial time to t0, 0 ≤ x2 ≤ x1 ≤ 1,

0 < x1 + x2 < 2, and x2
1 + x2

2 < 4.

Let y(t) = x1(t) + x2(t). Then for any choice of v, ÿ(t) < 0 and 0 < y(t) < 2 hold for any

t ∈ [0, t0]. In other words, ẏ(t) is decreasing with respect to t.

First, we will show that there exists v1 such that ẏ(t0)< 0. When v = 0 the four bodies form a

central configuration and, as a consequence, the motion of the four bodies leads to total collapse.
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Consider the time interval t ∈ [0, t0/2). In this interval, the differential equations (4.10) and (4.11)

have no singularity, and ÿ(t0/2) < 0. By continuous dependence on initial conditions, ẏ(t0/2) =

ẋ1(t0/2)+ ẋ2(t0/2) is a continuous function with respect to the initial velocity v. When v = 0,

ẋ1(t0/2) < 0, ẋ2(t0/2) = 0, which gives ẏ(t0/2) < 0. Therefore, there exists a δ > 0, such that

ẏ(t0/2)< 0 holds for any v ∈ (−δ,δ).

Choose v1 = δ/2, then ẏ(t0/2) < 0. Because ẏ(t) is decreasing with respect to t, ẏ(t0) ≤

ẏ(t0/2)< 0.

Next we will show that there exists v2 such that ẏ(t0)> 0. Note that as v→ ∞,

lim
v→∞

y(t0) = lim
v→∞

x1(t0)+ x2(t0) = 2

and

lim
v→∞

ẏ(t0) = ∞.

(Intuitively, the two bodies collide instantaneously at the point (1,1) with infinite velocity.) There-

fore there exists some positive value v2, such that ẏ(t0)> 0.

Proof of Theorem 4.1. From Theorem 4.3, we know there exists an initial velocity v = v0 such that

ẋ1(t0)+ ẋ2(t0) = 0. Let {P1,P2,Q1,Q2} for s ∈ [0,s0] be the solution in the regularized system

corresponding to the orbit from t = 0 to t = t0. Following collision, consider the behavior of the

first and second bodies. Assume their velocity was reflected about the y = x line in the plane. In

the new coordinate system, this corresponds to a new set of functions

{−P1(2s0− s),−P2(2s0− s),−Q1(2s0− s),−Q2(2s0− s)}

for s ∈ [s0,2s0]. We can easily check that

{−P1(2s0− s),−P2(2s0− s),−Q1(2s0− s),−Q2(2s0− s)}

for s ∈ [s0,2s0] is also a set of solutions for equations (4.5) through (4.8) with initial conditions at
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s= s0. Also, {P1(s),P2(s),Q1(s),Q2(s)} for s∈ [s0,2s0] satisfies equations (4.5) through (4.8) with

the same initial conditions at s = s0. Note that equations (4.5) through (4.8) with initial conditions

at s = s0 have a unique solution for any choice of v ∈ (0,∞). Then by uniqueness, the orbit for

s ∈ [s0,2s0] must be the same as the orbit for s ∈ [0,s0] in reverse, i.e.

Pi(s) =−Pi(2s0− s),Qi(s) =−Qi(2s0− s)

for s ∈ [0,s0]. Therefore at time s = 2s0, bodies 1 and 2 will have returned to their initial positions

with velocities (0,−v) and (−v,0) respectively. Similarly, at time s = 2s0, bodies 3 and 4 will have

also returned to their initial positions with velocities (0,v) and (v,0) respectively.

Next, we use symmetry and uniqueness to show the orbit from s = 2s0 to s = 4s0 and the orbit

from s = 0 to s = 2s0 will be symmetric with respect to the y−axis. Compare the motion of body

2 and body 3 from s = 2s0 to s = 4s0 with the motion of body 2 and body 1 from time s = 0 to

s = 2s0. The initial conditions of body 3 at s = 2s0 and the initial conditions of body 1 at s = 0 are

symmetric with respect to the y−axis. Also the initial conditions of body 2 at s = 2s0 and the initial

conditions of body 4 at s = 0 are symmetric with respect to the x−axis. Therefore, by uniqueness,

the orbit of bodies 2 and 3 from s = 2s0 to s = 4s0 and the orbit of bodies 1 and 2 from s = 0 to

s = 2s0 must be symmetric with respect to y−axis. Therefore, the orbit of bodies 1 and 4 from

s = 2s0 to s = 4s0 and and the orbit of bodies 3 and 4 from s = 0 to s = 2s0 are symmetric with

respect to the y−axis. Hence, at s = 4s0, the positions and velocities of the four bodies are exactly

the same as at s = 0. Therefore, the orbit is periodic with period s = 4s0.

4.1.2 Numerical Method. As we are searching for a periodic orbit of the n-body problem, we

assume the value of the Hamiltonian needs to be negative (see [41], Proposition 4.1). Using the

initial positions of the four bodies described earlier, it is not hard to find the potential energy at

t = 0:

U = 2
√

2+1.
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Then, acting under the negative Hamiltonian assumption:

2
√

2+1≥
n

∑
i=1

mi|vi|2

2
.

Since all masses are equal, if we require that the velocities of each body are equal in magnitude,

we obtain:

vmax =

√
2
√

2+1
2

(4.13)

with vmax defined to be the value of v such that the value of the Hamiltonian is zero. Define θ= v
vmax

.

This parameter is used in the numerical algorithm.

Since we know suitable bounds on the velocity parameter (θ∈ (0,1)), we can search the interval

numerically. We use an n-body simulator with the initial positions previously described. The

simulation is run until one SBC occurs. For simplicity, we consider only the collision between

the first and second bodies in the first quadrant. Summing their velocities immediately before the

collision gives a vector running along the line y = x (due to symmetry), with both components

having the same sign. The magnitude of this vector is given in Figure 4.2. Negative magnitudes

represent vectors with both components less than zero.

Next, a standard bisection method is used to find the amount of energy required to cause the

net velocity at collision to be zero. Using the initial interval θ ∈ [0,1],cthe correct value of θ was

found to be approximately θ = 0.464495.

Numerical simulations also demonstrate that for values of θ near the correct value, the orbit

remains for a significant length of time with the paths of the bodies lying in a “fattened” annular

region roughly the shape of the original orbit. Near the extreme ends, the orbit experiences near

total-collapse and then (numerically) the bodies rapidly shoot off to infinity.

4.2 VARIANTS

4.2.1 Orbits of more than four bodies. The same technique can be adopted to find similar

orbits for any arbitrary even number n. A key feature of these orbits will be higher numbers
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Figure 4.2: The signed magnitude of the net velocity of the first two bodies (vertical axis) at the
time of collision for various values of θ (horizontal axis).

of simultaneous binary collisions. For a given value of n, initial positions are given by spacing

the bodies evenly about the unit circle. The potential energy (and the value of vmax) is found

numerically by iterating over each pair of bodies and summing the reciprocal of the distances

between them. (Recall that all mi = 1.) Velocities are then assigned to the bodies in alternating

counter-clockwise and clockwise directions, initially tangent to the circle. Again we consider the

collision between the first and the second bodies. Although the net velocity of the two at collision

will not lie along the y = x line, the components of this vector will both have the same sign. The

magnitudes of the net velocity between the first two bodies at initial collision are shown in Figure

4.3 for various values of n. Lower curves in the graph correspond to higher values of n. Again,

negative magnitudes correspond to both components being negative.

Pictures of the orbit for n = 6 and n = 8 are shown in Figure 4.4. It is readily seen that as n

increases, the shape of the orbit more closely approximates a circle.
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Figure 4.3: Curves showing the magnitude of the net velocity of the first two bodies (vertical axis)
at the time of collision for various values of θ (horizontal axis) for n = 4,6,8,10,12.

Figure 4.4: The six- and eight-body two-dimensional periodic SBC orbits.
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CHAPTER 5. LINEAR STABILITY OF THE EQUAL-MASS PLANAR ORIBT

5.1 INTRODUCTION

In this chapter we apply the method of Roberts to prove the linear stability of the singular periodic

orbit in the symmetric planar equal mass problem as discussed in Chapter 4. The linear stability is

determined for the regularized equations only and is reduced to the rigorous numerical computation

of a single real number. Our linear stability analysis determines that the 2D singular periodic orbit

is linear stable. These examples support and extend the conjecture made by Roberts [1] that the

only linearly stable periodic orbits in the equal mass n-body problem are those that exhibit a time-

reversing symmetry.

The results presented in this chapter were originally published as [27].

5.2 LINEAR STABILITY FOR THE 2D SYMMETRIC PERIODIC ORBIT

In Chapter 4, we proved the existence of a special type of planar periodic solution of 2n bodies with

equal masses. In this section, we are going to consider the linear stability of this periodic solution

when n = 2. (Other values of n may be considered, but the equations developed in Chapter 4 were

only developed for n = 2, and would become more complicated for higher values of n.) We use

the same regularization as in Chapter 4 for the orbit. The Hamiltonian in the regularized setting is

given by

Γ =
dt
ds

(H−E) =
1

16
(P2

1 Q2
2 +P2

2 Q2
1)−
√

2(Q2
1 +Q2

2)−
√

2Q2
1Q2

2√
Q4

1 +Q4
2

−EQ2
1Q2

2 (5.1)

where E is the total energy of the Hamiltonian H. The differential equations in terms of the new

coordinates {Q1,Q2,P1,P2} are

Q′1 =
1
8

P1Q2
2, (5.2)

Q′2 =
1
8

P2Q2
1, (5.3)
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Figure 5.1: The periodic solution in the coordinate system Q1,Q2,P1,P2.

P′1 =−
1
8

P2
2 Q1 +2

√
2Q1 +

2
√

2Q1Q2
2√

Q4
1 +Q4

2

−
2
√

2Q5
1Q2

2

(Q4
1 +Q4

2)
3
2
+2EQ1Q2

2, (5.4)

P′2 =−
1
8

P2
1 Q2 +2

√
2Q2 +

2
√

2Q2Q2
1√

Q4
1 +Q4

2

−
2
√

2Q5
2Q2

1

(Q4
1 +Q4

2)
3
2
+2EQ2Q2

1. (5.5)

As shown in Chapter 4, for each ζ > 0 there exists v0 > 0 such that the initial conditions

Q1(0) = ζ, Q2(0) = ζ, P1(0) =−4v0, P2(0) = 4v0, (5.6)

lead to a periodic solution with a minimal period T . From Γ = 0, the value of E is determined by

this choice of ζ and v0. By construction, this periodic orbit satisfies

Q1(T/4) =−ζ, Q2(T/4) = ζ, P1(T/4) =−4v0, P2(T/4) =−4v0.

Simultaneous binary collisions correspond to s = T/8,5T/8 i.e., when Q1(s) = 0, and to s =

3T/8,7T/8, i.e., when Q2(s) = 0. For ζ = 1, we have (numerically) 4v0 ≈ 2.57487, and T/8 =

1.62047. Figure 5.1 illustrates the coordinates (Q1,Q2,P1,P2) of this periodic solution.
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5.2.1 Stability Reductions using Symmetry. We will reduce the stability analysis to the first

eighth of the periodic orbit. The symmetric periodic 2D orbit

γ(t) = (Q1(t),Q2(t),P1(t),P2(t))

with period T has a time-reversing symmetry and a time-preserving symmetry. For

F =

0 −1

1 0

 , G =

−1 0

0 1

 ,
the matrices

SF =

F 0

0 F

 , SG =

G 0

0 −G


satisfy S−1

F = ST
F , S2

F 6= I, S3
F 6= I, S4

F = I, S2
G = I, ST

G = SG, and (SFSG)
2 = I. Since γ(s+T/4) and

SFγ(s) = (−Q2(s),Q1(s),−P2(s),P1(s)) are solutions of (5.2) through (5.5) and share the same

initial conditions when s = 0, uniqueness of solutions implies that

γ(s+T/4) = SFγ(s) for all s.

Thus SF is a time-preserving symmetry of γ(s). With N = 4, conditions (2), (3), and (4) of Lemma

3.1 are satisfied, so that Corollary 3.2 (with k = 4) and S4
F = I imply that

X(T ) = S4
F
(
ST

FX(T/4)
)4

=
(
ST

FX(T/4)
)4
.

Since γ(−s+T/4) and SGγ(s) are solutions of (5.2) through (5.5) and share the same initial con-

ditions when s = 0, uniqueness of solutions implies that

γ(−s+T/4) = SGγ(s) for all s.
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Thus SG is a time-reversing symmetry for γ(s). With N = 4, conditions (2), (3), and (4) of Lemma

3.3 are satisfied, and so Corollary 3.4 implies that

X(T/4) = SG [X(T/8)]−1 ST
GX(T/8) = SG [X(T/8)]−1 SGX(T/8).

Let

B = X(T/8).

Combining the factorization of X(T ) that involves SF and the factorization of X(T/4) that involves

SG gives the factorization

X(T ) =
(
ST

FSGB−1SGB
)4
.

Setting

Q = ST
FSG =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


and D = B−1SGB results in the factorization

X(T ) = (QD)4

where Q and D are both involutions. The symmetries SF and SG generate a D4 symmetry group

for the periodic orbit γ(s).

5.2.2 A Good Basis. Let Y (s) be the fundamental matrix solution to the linearized equations

about the 2D periodic orbit γ(s) with arbitrary initial conditions Y0. Let

B = Y (T/8).
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By remarks following Corollaries 3.2 and 3.4, the matrix Y−1
0 Y (T ), which is similar to the mon-

odromy matrix X(T ) = Y (T )Y−1
0 , satisfies

Y−1
0 Y (T ) = (Y−1

0 ST
FSGY0B−1SGB)4 = (Y−1

0 QY0B−1SGB)4.

The question of linear stability reduces to showing that the eigenvalues of

W = Y−1
0 QY0B−1SGB

are on the unit circle. Recall that

Λ =

I 0

0 −I

 .
Lemma 5.1. There exists Y0 such that

1. Y0 is orthogonal and symplectic, and

2. Y−1
0 QY0 = Λ.

Proof. Choose the third column of Y0 to be

γ ′(0)
‖γ ′(0)‖

=
1
c

[
−a a b b

]T

where a = v0ζ2/2, b = Eζ3 = (2v2
0− 2

√
2− 1)ζ and c =

√
2a2 +2b2. Let coli(Y0) denote the ith

column of Y0. Define

col1(Y0) = J · col3(Y0) =
1
c

[
b b a −a

]T

.

We now choose col4(Y0) such that col4(Y0) is orthogonal to col3(Y0), and col4(Y0) is one of the

eigenvectors of Q with respect to its eigenvalue of −1. Since the eigenspace of Q corresponding
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to its eigenvalue of −1 is

span

{[
1 −1 0 0

]T

,

[
0 0 1 1

]T
}
,

define

col4(Y0) =
1
c

[
b −b a a

]T

and

col2(Y0) = J · col4(Y0) =
1
c

[
a a −b b

]T

.

The matrix

Y0 =
1
c



b a −a b

b a a −b

a −b b a

−a b b a


,

is both symplectic and orthogonal and it satisfies Y−1
0 QY0 = Λ.

Setting D=B−1SGB and choosing Y0 to be the matrix constructed in Lemma 5.1 gives W =ΛD.

The matrices Λ and D are involutions (the latter because S2
G = I). Then W−1 = DΛ, and there is a

2×2 matrix K such that

1
2
(
W +W−1)=

KT 0

0 K

 .
We show that the first column of K is [1 0]T . Since ST

G = SG, Y−1
0 = Y T

0 , it follows by the

remark following Corollary 3.4 that

W = Y−1
0 ST

FSGY0B−1SGB = Y−1
0 ST

FY (T/4) = Y T
0 ST

FY (T/4).
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Set v = Y−1
0 γ ′(0). By the choice of the matrix Y0,

v = Y−1
0 γ

′(0) = Y T
0 γ
′(0) =



0

0

||γ ′(0)||

0


= ||γ ′(0)||e3.

Because γ ′(s) is a solution to the linearized equation ξ̇ = JD2Γ(γ(s))ξ and γ ′(0) = Y (0)Y−1
0 γ ′(0),

then γ ′(s) = Y (s)Y−1
0 γ ′(0) for all s. Hence,

Wv = Y T
0 ST

FY (T/4)v = Y T
0 ST

Fγ
′(T/4). (5.7)

Since γ satisfies γ(s+T/4) = SFγ(s) for all s and S−1
F = ST

F , it then follows that

γ
′(s) = S−1

F γ
′(s+T/4) = ST

Fγ
′(s+T/4).

Setting s = 0 in this gives γ ′(0) = ST
Fγ ′(T/4), and consequently that

Y T
0 ST

Fγ
′(T/4) = Y T

0 γ
′(0) = Y−1

0 γ
′(0) = v. (5.8)

Equations (5.7) and (5.8) now combine to show that Wv = v, i.e, that 1 is an eigenvalue of W and

e3 is an eigenvector for W corresponding to this eigenvalue. The first column of K is as claimed.

The rest of K comes from the formula for the inverse of a symplectic matrix and the definition of

D:

K =

 1 ∗

0 cT
2 (SGJc4)

 ,
where ci is the ith column of B = Y (T/8).
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5.2.3 Numerical Calculations. Having not fixed E, we use an invariant scaling of the coordi-

nates and time in equations (5.2) through (5.5) to preselect a period T before numerically comput-

ing the initial conditions for a periodic simultaneous binary collision orbit. For ε > 0, if Q1(s),

Q2(s), P1(s), P2(s) is a periodic simultaneous collision orbit of equations (5.2) through (5.5) for

a certain value of E, then εQ1(εs), εQ2(εs), P1(εs), P2(εs) is also a periodic simultaneous binary

collision orbit with energy ε−2E and period ε−1T . Furthermore, it is straightforward to show that

monodromy matrices for the periodic simultaneous binary collision orbits corresponding to values

of ε 6= 1 are all similar to that for ε = 1. Thus the linear stability of a periodic simultaneous bi-

nary collision orbit for one ε > 0 implies the linear stability of the periodic simultaneous binary

collision orbits for all ε > 0.

We rigorously computed the value of cT
2 (SGJc4) for the periodic simultaneous binary collision

orbit whose period is T = 8. This means that the first time of a simultaneous binary collision for

this orbit is at s = 1. We set Q1(0) = Q2(0) = ξ and −P1(0) = P2(0) = η, and defined a function

F(ξ,η) to be equal to the vector quantity (Q1(1),P2(1)). We used Newton’s method and a good

initial guess to find a root (ξ,η) of F . This involved computing the Jacobian of F which was done

using the linearized equations. We find numerically that

Q1(0) = Q2(0)≈ 1.62047, −P1(0) = P2(0)≈ 2.57487,

lead to a periodic solution with a period of T = 8, and a value of E ≈−1.14233. Using MATLAB

and a Runge-Kutta-Fehlberg algorithm, we computed the columns of the matrix Y (T/8). From

this we get

cT
2 (SGJc4)≈−0.68024.

Using the scaling of coordinates and time described above, the initial conditions for the periodic

simultaneous binary collision orbit shown in Figures 4.1 and 5.1 are

Q1(0) = Q2(0) = 1, −P1(0) = P2(0)≈ 2.57487
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with a period T satisfying T/8≈ 1.62047, and energy E ≈−2.99968.

For the periodic simultaneous binary collision orbit, the rigorous estimate of the eigenvalue

cT
2 (SGJc4) of K and its distinctiveness from the eigenvalue 1 of K combine with Lemma 3.5 to

give the following stability result.

Theorem 5.2. The periodic simultaneous binary collision orbit in the 2D-symmetric equal mass

four-body problem is linearly stable.

When cT
2 (SGJc4) is real and between−1 and 1, it is the real part of an eigenvalue with unit mod-

ulus for W (see [1]). For the periodic simultaneous collision orbit, the real part of exp(3πi/4), that

is−(1/2)
√

2, is fairly close to the rigorously estimated value of cT
2 (SGJc4). Raising exp(3πi/4) to

the fourth power gives exp(3πi) =−1, and so two of the eigenvalues of the monodromy matrix of

the periodic simultaneous binary collision orbit are close to −1. The symmetry reductions used to

compute the eigenvalues over just one-eighth of the period and the rigorous estimate of cT
2 (SGJc4)

showing that it is clearly between−1 and 1, assures the linear stability of the periodic simultaneous

binary collision orbit.
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CHAPTER 6. THE PAIRWISE EQUAL-MASS PLANAR ORBIT

6.1 INTRODUCTION

In this chapter we extend the analytic existence of a symmetric periodic SBC orbit in the fully

symmetric planar four-body equal mass problem [26] to the analytic existence of a symmetric

periodic SBC orbit in the planar pairwise symmetric four-body problem, or PPS4BP for short. The

results presented in this chapter were originally published as [28].

The positions of the four pairwise symmetric bodies in the plane are (±x1,±x2) and (±x3,±x4),

where the two bodies at (±x1,x2) have mass 1, and the others pair has mass m, with 0 < m ≤ 1.

With t as the time variable and˙= d/dt, the momenta for the four masses are (ω1,ω2) = 2(ẋ1, ẋ2),

(ω3,ω4) = 2m(ẋ3, ẋ4),−(ω1,ω2), and−(ω3,ω4). The Hamiltonian for the PPS4BP is H = K−U ,

where

K =
1
4
[
ω

2
1 +ω

2
2
]
+

1
4m

[
ω

2
3 +ω

2
4
]
,

and

U =
1

2
√

x2
1 + x2

2

+
2m√

(x3− x1)2 +(x4− x2)2

+
2m√

(x1 + x3)2 +(x2 + x4)2
+

m2

2
√

x2
3 + x2

4

.

The angular momentum for the PPS4BP is

A = x1ω2− x2ω1 + x3ω4− x4ω3.

The center of mass is fixed at the origin, and the linear momentum is zero. With

J =

 0 I

−I 0


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for I the 4× 4 identity matrix, the vector field for the PPS4BP is J∇H, i.e., the Hamiltonian

system of equations with Hamiltonian H are ẋi = ∂H/∂ωi, ω̇i = −∂H/∂xi, i = 1,2,3,4. The

PPS4BP presented here is the Caledonian symmetric four-body problem [42] with non-collinear

initial positions.

The initial conditions for the orbits of interest has the first body of mass 1 located on the

positive horizontal axis with its momentum perpendicular to the horizontal axis, and the first body

of mass m located on the positive vertical axis with its momentum perpendicular to the vertical

axis. Specifically, at t = 0 we have

x1 > 0, x2 = 0, x3 = 0, x4 > 0, with x4 ≤ x1,

ω1 = 0, ω2 > 0, ω3 > 0, ω4 = 0, with ω2 ≤ ω3,

at which H is defined. The first objective is to find, for 0 < m≤ 1, values of x1,x4,ω2,ω3 at t = 0

such that:

(i) x3− x1 = 0 and x4− x2 = 0 with x2
1 + x2

2 6= 0 at some t = t0 > 0,

(ii) x1 + x3 = 0 and x2 + x4 = 0 with x2
1 + x2

2 6= 0 at some t = t1 > t0,

(iii) the orbit extends to a symmetric periodic orbit, and

(iv) the periodic orbit avoids all the other kinds of collisions.

Such an orbit experiences a SBC in the first and third quadrant at t = t0, and then another SBC in the

second and fourth quadrants at t = t1, before returning to its initial conditions at some t = t2 > t1.

The presence of collisions along the orbit necessarily imposes zero angular momentum on the

orbit, thus requiring that x1ω2− x4ω3 = 0 at t = 0. Examples of these symmetric periodic SBC

orbits in the PPS4BP with masses 1, m, 1, m are illustrated in Figure 6.1 for m = 1 and m = 0.539.

The second objective is to numerically investigate the linear stability of the symmetric periodic

SBC orbits as m varies over interval (0,1].
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Figure 6.1: The symmetric periodic SBC orbit in the PPS4BP for m = 1 (left) and m = 0.539
(right). The two black curves are those traced out by ±(x1(t),x2(t)), and the two gray curves are
those traced out by ±(x3(t),x4(t)).

The regularization of the SBCs, as described by (i) and (ii) above, in the Hamiltonian system of

equations with Hamiltonian H plays a key role in achieving the two objectives. Section 6.2 details

this regularization which consists of two canonical transformations followed by a scaling of time

t = θ(s) with s as the regularizing time variable, producing a new Hamiltonian Γ̂ for the PPS4BP

in extended phase space. Section 6.3 describes a scaling of orbits of the Hamiltonian system of

equations with Hamiltonian Γ̂ which shows that any such periodic solution always belongs to a

one-parameter family of periodic solutions for which the linear stability is the same for all periodic

solutions in the family. Section 6.4 describes the symmetries of the Hamiltonian Γ̂ which are used

to construct periodic solutions with a D4 symmetry group generated by a time-reversing symmetry

and a time-preserving symmetry.

In Sections 6.5 and 6.6, we prove the analytic existence of a periodic SBC orbit γ(s), with a D4

symmetry group, for the Hamiltonian system of equations with Hamiltonian Γ̂ with m = 1, and nu-

merically investigate its stability. The proof extends the analytic existence of a symmetric periodic

SBC orbit in the fully symmetric planar four-body equal mass problem, as found in Chapter 4, to

the PPS4BP with equal masses. Our numerical estimates of the characteristic multipliers show that

this periodic orbit is linearly stable.
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6.2 REGULARIZATION

We adapt the regularization of Aarseth and Zare [19] to the PPS4BP to regularize SBCs as de-

scribed in the first objective. This regularization differs from the one used in the Caledonian

symmetric four-body problem [42] in that we only regularize the SBCs as described in the first

objective of this chapter’s introduction.

The first canonical transformation in our regularization is

(x1,x2,x3,x4,ω1,ω2,ω3,ω4)→ (g1,g2,g3,g4,h1,h2,h3,h4)

determined by the generating function

F1(x1,x2,x3,x4,h1,h2,h3,h4) = h1(x1− x3)+h2(x2− x4)+h3(x1 + x3)+h4(x2 + x4).

So the first canonical transformation is determined by

ωi =
∂F1

∂xi
, gi =

∂F1

∂ωi
, i = 1,2,3,4. (6.1)

The new Hamiltonian is H̃ = K̃−Ũ , where

K̃ =
(h1 +h3)

2 +(h2 +h4)
2

4
+

(h3−h1)
2 +(h4−h2)

2

4m
,

and

Ũ =
1√

(g1 +g3)2 +(g2 +g4)2
+

2m√
g2

1 +g2
2

+
2m√

g2
3 +g2

4

+
m2√

(g1−g3)2 +(g2−g4)2
.

The second canonical transformation in our regularization,

(g1,g2,g3,g4,h1,h2,h3,h4)→ (u1,u2,u3,u4,v1,v2,v3,v4)
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is determined by the generating function

F2(h1,h2,h3,h4,u1,u2,u3,u4) =−
4

∑
j=1

h j f j(u1,u2,u3,u4),

where

f1 = u2
1−u2

2, f2 = 2u1u2, f3 = u2
3−u2

4, f4 = 2u3u4.

So the second canonical transformation is determined by

gi =−
∂F2

∂hi
, vi =−

∂F2

∂ui
, i = 1,2,3,4. (6.2)

The new Hamiltonian is Ĥ = K̂−Û , where

K̂ =
1

16

(
1+

1
m

)[
(v2

1 + v2
2)(u

2
3 +u2

4)+(v2
3 + v2

4)(u
2
1 +u2

2)

(u2
1 +u2

2)(u
2
3 +u2

4)

]
+

1
8

(
1− 1

m

)
(v3u3− v4u4)(v1u1− v2u2)+(v3u4 + v4u3)(v1u2 + v2u1)

(u2
1 +u2

2)(u
2
3 +u2

4)
,

and

Û =
1√

(u2
1−u2

2 +u2
3−u2

4)
2 +(2u1u2 +2u3u4)2

+
2m

u2
1 +u2

2
+

2m
u2

3 +u2
4

+
m2√

(u2
1−u2

2−u2
3 +u2

4)
2 +(2u1u2−2u3u4)2

.

We introduce a new time variable s by the regularizing change of time

dt
ds

= (u2
1 +u2

2)(u
2
3 +u2

4).
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To simplify notation, we set

M1 = v1u1− v2u2, M2 = v1u2 + v2u1,

M3 = v3u3− v4u4, M4 = v3u4 + v4u3,

M5 = u2
1−u2

2 +u2
3−u2

4, M6 = 2u1u2 +2u3u4,

M7 = u2
1−u2

2−u2
3 +u2

4, M8 = 2u1u2−2u3u4.

The Hamiltonian in the extended phase space with coordinates u1, u2, u3, u4, Ê, v1, v2, v3, v4, t is

Γ̂ =
dt
ds

(
Ĥ− Ê

)
=

1
16

(
1+

1
m

)(
(v2

1 + v2
2)(u

2
3 +u2

4)+(v2
3 + v2

4)(u
2
1 +u2

2)

)
+

1
8

(
1− 1

m

)(
M3M1 +M4M2

)
−

(u2
1 +u2

2)(u
2
3 +u2

4)√
M2

5 +M2
6

−2m
(
u2

1 +u2
2 +u2

3 +u2
4)

−
m2(u2

1 +u2
2)(u

2
3 +u2

4)√
M2

7 +M2
8

− Ê(u2
1 +u2

2)(u
2
3 +u2

4).

We will use ′ to denote the derivative with respect to time s. In this notation, the Hamiltonian

system of equations with Hamiltonian Γ̂ is

u′i =
∂Γ̂

∂vi
, v′i =−

∂Γ̂

∂ui
, i = 1,2,3,4, (6.3)

along with the auxiliary equations,

Ê ′ =
∂Γ̂

∂t
= 0, t ′ =−∂Γ̂

∂Ê
= (u2

1 +u2
2)(u

2
3 +u2

4). (6.4)

On the level set Γ̂ = 0, the value of the Hamiltonian Ĥ (i.e., the energy) along solutions of the

Hamiltonian system of equations with Hamiltonian Γ̂ is Ê. Independent of the values of Ê and Γ̂,

the angular momentum A= x1ω2−x2ω1+x3ω4−x4ω3 in the coordinates u1,u2,u3,u4,v1,v2,v3,v4
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simplifies to

A =
1
2
[
− v1u2 + v2u1− v3u4 + v4u3

]
. (6.5)

On the level set Γ̂= 0, two simultaneous binary collisions in the PPS4BP have been regularized

in the Hamiltonian system of equations with Hamiltonian Γ̂. The simultaneous binary collision

x3− x1 = 0 and x4− x2 = 0 with x2
1 + x2

2 6= 0 corresponds to u2
1 +u2

2 = 0 with u2
3 +u2

4 6= 0. These

imply that M2
5 +M2

6 = 4(x2
1 + x2

2) 6= 0 and M2
7 +M2

8 = 4(x2
1 + x2

2) 6= 0. From Γ̂ = 0 it follows that

v2
1 + v2

2 = (32m2)/(m+1). (6.6)

Similarly, the simultaneous binary collision x3 + x1 = 0 and x4 + x2 = 0 with x2
1 + x2

2 6= 0 corre-

sponds to u2
3 + u2

4 = 0 with u2
1 + u2

2 6= 0, and hence that M2
5 +M2

6 = 4(x2
1 + x2

2) 6= 0, M2
7 +M2

8 =

4(x2
1 + x2

2) 6= 0, and, from Γ̂ = 0, that

v2
3 + v2

4 = (32m2)/(m+1).

On the level set Γ̂ = 0, the other singularities of the PPS4BP have not been regularized in the

Hamiltonian system of equations with Hamiltonian Γ̂. The binary collision x1 = 0, x2 = 0 with

x2
3 + x2

4 6= 0 corresponds to M2
5 +M2

6 = 0 and M2
7 +M2

8 6= 0 with u2
1 +u2

2 6= 0 and u2
3 +u2

4 6= 0. The

binary collision x3 = 0, x4 = 0 with x2
1 + x2

2 6= 0 corresponds to M2
5 +M2

6 6= 0 and M2
7 +M2

8 = 0

with u2
1+u2

2 6= 0 and u2
3+u2

4 6= 0. Because of the pairwise symmetry, there are no triple collisions.

Total collapse x1 = 0, x2 = 0, x3 = 0, x4 = 0 corresponds to u1 = 0, u2 = 0, u3 = 0, and u4 = 0.

We establish next the correspondence between the original coordinates and the regularized

coordinates for the initial conditions given in the introduction to this chapter, the proof of which is

straightforward.
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Lemma 6.1. The conditions (at t = 0)

x1 > 0, x2 = 0, x3 = 0, x4 > 0, with x4 ≤ x1,

ω1 = 0, ω2 > 0, ω3 > 0, ω4 = 0, with ω2 ≤ ω3,

correspond to the conditions (at s = 0)

u3 =±u1, u4 =∓u2, with u1u2 < 0, |u2| ≤ (
√

2−1)|u1|,

v3 =∓v1, v4 =±v2, with 0 < v1u2 + v2u1 ≤ v2u2− v1u1.

6.3 A SCALING OF PERIODIC ORBITS AND LINEAR STABILITY

A certain scaling of solutions of the Hamiltonian system of equations with Hamiltonian Γ̂ produces

more solutions. When applied to a periodic solution, this scaling leads to a one-parameter family

of periodic solutions. The proof of the following result is a straight-forward verification.

Lemma 6.2. If γ(s) = (u1(s),u2(s),u3(s),u4(s),v1(s),v2(s),v3(s),v4(s)) is a periodic solution of

the Hamiltonian system of equations with Hamiltonian Γ̂ on the level set Γ̂ = 0 with period T and

energy Ê, then for every ε > 0, the function

γε(s) = (εu1(εs),εu2(εs),εu3(εs),εu4(εs),v1(εs),v2(εs),v3(εs),v4(εs))

is a periodic solution of the Hamiltonian system of equations with Hamiltonian Γ̂ on the level set

Γ̂ = 0 with period Tε = ε−1T and energy Êε = ε−2Ê.
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6.4 SYMMETRIES

The Hamiltonian system of equations with Hamiltonian Γ̂ has a group of symmetries isomorphic

to the dihedral group D4 = 〈a,b : a2 = b4 = (ab)2 = e〉. With

F =

−1 0

0 1

 , G =

1 0

0 1

 ,
define the matrices

SF =



0 F 0 0

−F 0 0 0

0 0 0 F

0 0 −F 0


, SG =



−G 0 0 0

0 G 0 0

0 0 G 0

0 0 0 −G


.

These matrices satisfy S2
F = −I, S4

F = I, S2
G = I, and (SFSG)

2 = I. Fixing the value of Ê, these

matrices satisfy Γ̂◦SF = Γ̂ and Γ̂◦SG = Γ̂, and so SF and SG are the generators of the D4-symmetry

group for Γ̂. If

γ(s) = (u1(s),u2(s),u3(s),u4(s),v1(s),v2(s),v3(s),v4(s))

is a solution of the Hamiltonian system of equations with Hamiltonian Γ̂, then SFγ(s), S2
Fγ(s),

and SGγ(−s) are also solutions of the Hamiltonian system of equations with Hamiltonian Γ̂. This

means that SF is a time-preserving symmetry and that SG is a time-reversing symmetry. The proof

of the following follows the same procedure as similar proofs in Chapters 4 and 5.

Lemma 6.3. If for some s0 > 0 there is a nonsingular solution γ(s), s ∈ [0,s0], of the Hamiltonian

system of equations with Hamiltonian Γ̂ such that for constants ζ1 6= 0, ζ2 6= 0, ρ1 6= 0, and ρ2 6= 0

there holds

u1(0) = ζ1, u2(0) = ζ2, u3(0) = ζ1, u4(0) =−ζ2,

v1(0) = ρ1, v2(0) = ρ2, v3(0) =−ρ1, v4(0) = ρ2,
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and

u1(s0) = 0, u2(s0) = 0, u3(s0) 6= 0, u4(s0) 6= 0,

v1(s0) 6= 0, v2(s0) 6= 0, v3(s0) = 0, v4(s0) = 0,

then γ(s) extends to a periodic orbit with period 8s0 and a symmetry group isomorphic to D4 such

that

u1(3s0) 6= 0, u2(3s0) 6= 0, u3(3s0) = 0, u4(3s0) = 0,

v1(3s0) = 0, v2(3s0) = 0, v3(3s0) 6= 0, v4(3s0) 6= 0,

and

u1(5s0) = 0, u2(5s0) = 0, u3(5s0) 6= 0, u4(5s0) 6= 0,

v1(5s0) 6= 0, v2(5s0) 6= 0, v3(5s0) = 0, v4(5s0) = 0,

and

u1(7s0) 6= 0, u2(7s0) 6= 0, u3(7s0) = 0, u4(7s0) = 0,

v1(7s0) = 0, v2(7s0) = 0, v3(7s0) 6= 0, v4(7s0) 6= 0.

6.5 ANALYTIC EXISTENCE IN THE EQUAL MASS CASE

When m = 1, there is an additional symmetry in the positions of the four masses that reduces

the PPS4BP with equal masses to the fully symmetric planar four-body equal mass problem. We

exploit this reduction to prove the existence of a symmetric periodic simultaneous binary collision

orbit in the equal mass case.

The additional symmetry is the Ansätz, x4 = x1, x3 = x2, with |x2| ≤ x1. From this it follows

that ω4 = ω1, ω3 = ω2, x1− x2 ≥ 0, x1 + x2 ≥ 0. From the canonical transformations (6.1) and
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(6.2), we have

2u2
1

1+
√

2
= x1− x2 =

2u2
2

−1+
√

2
,

2u2
3

1+
√

2
= x1 + x2 =

2u2
4

−1+
√

2
.

Since 2u1u2 = g2 = x2− x1 ≤ 0 and 2u3u4 = g4 = x1 + x2 ≥ 0, it follows that

u2 =−(
√

2−1)u1, u4 = (
√

2−1)u3. (6.7)

From the second canonical transformation (6.2), we have

v1 =
√

2(ω1−ω2)u1, v2 =−(2−
√

2)(ω1−ω2)u1,

v3 =
√

2(ω1 +ω2)u3, v4 = (2−
√

2)(ω1 +ω2)u3.

These imply that

v2 =−(
√

2−1)v1, v4 = (
√

2−1)v3. (6.8)

Substitution into the Hamiltonian system of equations with Hamiltonian Γ̂ (and with m = 1) gives

u′1 =
4−2

√
2

4
v1u2

3, u′2 =−
(
√

2−1)(4−2
√

2)
4

v1u2
3,

u′3 =
4−2

√
2

4
v3u2

1, u′4 =
(
√

2−1)(4−2
√

2)
4

v3u2
1,
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Ê ′ = 0, and

v′1 =−
(4−2

√
2)u1v2

3
4

+4u1 +
4u1u2

3√
u4

1 +u4
3

−
4u5

1u2
3(

u4
1 +u4

3
)3/2 +2(4−2

√
2)Êu1u2

3,

v′2 =− (
√

2−1)

[
−

(4−2
√

2)u1v2
3

4
+4u1 +

4u1u2
3√

u4
1 +u4

3

−
4u5

1u2
3(

u4
1 +u4

3
)3/2

+2(4−2
√

2)Êu1u2
3

]
,

v′3 =−
(4−2

√
2)u3v2

1
4

+4u3 +
4u2

1u3√
u4

1 +u4
3

−
4u2

1u5
3(

u4
1 +u4

3
)3/2 +2(4−2

√
2)Êu2

1u3,

v′4 = (
√

2−1)

[
−

(4−2
√

2)u3v2
1

4
+4u3 +

4u2
1u3√

u4
1 +u4

3

−
4u2

1u5
3(

u4
1 +u4

3
)3/2

+2(4−2
√

2)Êu2
1u3

]
,

t ′ = (4−2
√

2)2u2
1u2

3.

Because of Equations (6.7) and (6.8), the equations in u′2, u′4, v′2, and v′4 duplicate those in u′1, u′3,

v′1, and v′3. The Ansätz x4 = x1, x3 = x2 with |x2| ≤ x1, therefore leads to the reduced system of

equations,

u′1 =
4−2

√
2

4
v1u2

3,

u′3 =
4−2

√
2

4
v3u2

1,

Ê ′ =0,

v′1 =−
(4−2

√
2)u1v2

3
4

+4u1 +
4u1u2

3√
u4

1 +u4
3

−
4u5

1u2
3(

u4
1 +u4

3
)3/2 +2(4−2

√
2)Êu1u2

3,

v′3 =−
(4−2

√
2)u3v2

1
4

+4u3 +
4u2

1u3√
u4

1 +u4
3

−
4u2

1u5
3(

u4
1 +u4

3
)3/2 +2(4−2

√
2)Êu2

1u3,

t ′ =(4−2
√

2)2u2
1u2

3.
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Scale the value of Ê by

Ẽ =
Ê

4−2
√

2
, (6.9)

and define

Γ̃ =
4−2

√
2

8
(
v2

1u2
3 + v2

3u2
1
)
−2(u2

1 +u2
3)−

2u2
1u2

3√
u4

1 +u4
3

− (4−2
√

2)2Ẽu2
1u2

3.

It is straight-forward to check that the reduced system of equations satisfies

u′i =
∂Γ̃

∂vi
, v′i =−

∂Γ̃

∂ui
, i = 1,2, Ẽ ′ =

∂Γ̃

∂t
, t ′ =−∂Γ̃

∂Ẽ
.

Thus the system of reduced equations is Hamiltonian.

We will simplify the Hamiltonian Γ̃ by a linear symplectic transformation with a multiplier

µ 6= 1. Define new coordinates (Q1,Q2,E,P1,P2,τ) by

u1 =
Q1

21/4 , v1 =
P1

2
√√

2−1
, (6.10)

u3 =
Q2

21/4 , v3 =
P2

2
√√

2−1
, (6.11)

Ẽ =
2E

(4−2
√

2)2
, t = 23/4(

√
2−1)3/2

τ. (6.12)

This is a linear symplectic change of coordinates with multiplier

µ =
1

25/4
√√

2−1
. (6.13)

Under this linear symplectic transformation and the accompanying scaling σ = s/µ of the indepen-

dent variable s, the Hamiltonian Γ̃ becomes

Γ =
1

16
(
P2

1 Q2
2 +P2

2 Q2
1
)
−
√

2(Q2
1 +Q2

2)−
√

2Q2
1Q2

2√
Q4

1 +Q4
2

−EQ2
1Q2

2.

54



www.manaraa.com

The reduced system of equations is the Hamiltonian system of equations with Hamiltonian Γ,

dQi

dσ
=

∂Γ

∂Pi
,

dPi

dσ
=− ∂Γ

∂Qi
, i = 1,2,

dE
dσ

= 0,
dτ

dσ
= Q2

1Q2
2. (6.14)

The function Γ is a regularized Hamiltonian for the fully symmetric planar four-body equal

mass problem with the bodies located at (x1,x2), (x2,x1), (−x1,−x2), and (−x2,−x1), giving the

same setting as in Chapter 4. On the level set Γ = 0, the solutions have energy E. One regularized

simultaneous binary collision occurs when Q1 = 0 and Q2 6= 0, for which Γ= 0 implies P2
1 = 16

√
2,

and for which the transformation between Q1,Q2 and x1,x2 implies x1− x2 = 0 and x1 + x2 6= 0.

The other regularized simultaneous binary collision occurs when Q1 6= 0 and Q2 = 0, for which

Γ = 0 implies P2
2 = 16

√
2, and for which the transformation between Q1,Q2 and x1,x2 implies

x1− x2 6= 0 and x1 + x2 = 0. Total collapse occurs when Q1 = 0 and Q2 = 0, and is the only

singularity in Γ that is not regularized.

From Chapter 4 (notation slightly varied):

Lemma 6.4. There exists ϑ > 0, σ0 > 0, and a nonsingular solution Q1(σ), Q2(σ), P1(σ), P2(σ),

σ ∈ [0,σ0], of the Hamiltonian system of equations with Hamiltonian Γ on the level set Γ = 0 such

that

Q1(0) = 1, Q2(0) = 1, P1(0) =−ϑ, P2(0) = ϑ, (6.15)

E =
ϑ2−16

√
2−8

8
< 0, τ(σ) =

∫
σ

0
Q2

1(y)Q
2
2(y) dy, (6.16)

and

Q1(σ0) = 0, Q2(σ0)> 0, P1(σ0) =−4(21/4), P2(σ0) = 0. (6.17)

This Lemma gives the existence of a solution of a boundary value problem for the Hamiltonian

system of equations with Hamiltonian Γ. It is this solution whose symmetric extension gives a

symmetric periodic SBC orbit in the PPS4BP with equal masses.

Theorem 6.5. Fix m = 1. For each Ê < 0, there exists a time-reversible periodic regularized SBC
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orbit

γ(s) = (u1(s),u2(s),u3(s),u4(s),v1(s),v2(s),v3(s),v4(s))

with period T > 0, angular momentum A = 0, and a symmetry group isomorphic to D4, for the

Hamiltonian system of equations with Hamiltonian Γ̂ on the level set Γ̂ = 0 such that distinct regu-

larized SBCs occur at s = T/8,3T/8,5T/8,7T/8. This periodic orbit corresponds to a symmetric

periodic singular orbit

(x1(t), x2(t), x3(t), x4(t), ω1(t), ω2(t), ω3(t), ω4(t))

with energy Ê for the PPS4BP with equal masses m = 1 where for all t,

x4(t) = x1(t), x3(t) = x2(t), |x2(t)| ≤ x1(t), ω4(t) = ω1(t), ω3(t) = ω2(t),

with initial conditions

x1(0)> 0, x2(0) = 0, ω1(0) = 0, ω2(0)> 0,

and period

R =
∫ T/2

0

(
u2

1(s)+u2
2(s)
)(

u2
3(s)+u2

4(s)
)

ds,

where for t ∈ [0,R], the only singularities are two distinct SBC’s occurring at t =R/4 and t = 3R/4.

Proof. By Lemma 6.4, let Q1(σ), Q2(σ), P1(σ), P2(σ), σ ∈ [0,σ0], be the nonsingular solution

of the Hamiltonian system of equations (6.14) with Hamiltonian Γ on the level set Γ = 0, whose

properties are given in (6.15), (6.16), and (6.17). Using the scaling σ = s/µ, set s0 = µσ0. By the

linear symplectic transformation given in (6.10), (6.11), and (6.12) with multiplier µ (as given in

(6.13)), we have

u1(s) =
Q1(s/µ)

21/4 , u3(s) =
Q2(s/µ)

21/4 , v1(s) =
P1(s/µ)

2
√√

2−1
, v3(s) =

P2(s/µ)

2
√√

2−1
.
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By Equations (6.7) and (6.8), we have

u2(s) =
−(
√

2−1)Q1(s/µ)
21/4 , u4(s) =

(
√

2−1)Q2(s/µ)
21/4 ,

v2(s) =
−
√√

2−1P1(s/µ)
2

, v4(s) =

√√
2−1P2(s/µ)

2
.

Set γ(s) = (u1(s),u2(s),u3(s),u4(s),v1(s),v2(s),v3(s),v4(s)), s∈ [0,s0]. From the Equations (6.9),

(6.12), (6.16) in E, Ê, Ẽ, and ϑ, we obtain

Ê =
(2+
√

2)ϑ2

16
−3− 5

√
2

2
< 0.

With this value of Ê, it follows that the value of Γ̂ at γ(0) is 0. Set

ζ1 =
1

21/4 > 0, ζ2 =
−(
√

2−1)
21/4 < 0,

ρ1 =
−ϑ

2
√√

2−1
< 0, ρ2 =

ϑ

√√
2−1

2
> 0.

With Q1(σ), Q2(σ), P1(σ), P2(σ), σ ∈ [0,σ0], being a nonsingular solution of the Hamiltonian

system of equations with Hamiltonian Γ, we have Q4
1(σ)+Q4

2(σ) 6= 0 for all σ ∈ [0,σ0]. From this

it follows for all s ∈ [0,s0] that

M5 = u2
1(s)−u2

2(s)+u2
3(s)−u2

4(s) = (2−
√

2)
[
Q2

1(s/µ)+Q2
2(s/µ)

]
6= 0,

and

M8 = 2u1(s)u2(s)−2u3(s)u4(s) =−(2−
√

2)
[
Q2

1(s/µ)+Q2
2(s/µ)

]
6= 0.

These imply that M2
5 +M2

6 6= 0 and M2
7 +M2

8 6= 0 for all s ∈ [0,s0]. Thus the function γ(s) is a

nonsingular solution of the Hamiltonian system of equations (6.3) with Hamiltonian Γ̂ on the level
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set Γ̂ = 0 that satisfies

u1(0) = ζ1, u2(0) = ζ2 u3(0) = ζ1, u4(0) =−ζ2,

v1(0) = ρ1, v2(0) = ρ2, v3(0) =−ρ1, v4(0) = ρ2,

u1(s0) = 0, u2(s0) = 0, u3(s0)> 0, u4(s0)> 0,

v1(s0)< 0, v2(s0)> 0, v3(s0) = 0, v4(s0) = 0.

By Lemma 6.3, the solution γ(s) extends to a T = 8s0 periodic solution, call it γ(s), with a D4 sym-

metry group generated by the symmetries SF and SG, and four distinct regularized simultaneous

binary collisions at s = s0,3s0,5s0,7s0, for which

u2
1(s0)+u2

2(s0) = 0, u2
3(s0)+u2

4(s0) 6= 0,

u2
1(3s0)+u2

2(3s0) 6= 0, u2
3(3s0)+u2

4(3s0) = 0,

u2
1(5s0)+u2

2(5s0) = 0, u2
3(5s0)+u2

4(5s0) 6= 0,

u2
1(7s0)+u2

2(7s0) 6= 0, u2
3(7s0)+u2

4(7s0) = 0.

Since Q4
1(σ)+Q4

2(σ) 6= 0 for all σ ∈ [0,σ0], it follows that (u2
1(s)+u2

2(s))(u
2
3(s)+u2

4(s)) 6= 0 for

s ∈ [0,T ] except s = s0,3s0,5s0,7s0. The regularizing change of time (6.4),

dt
ds

= (u2
1(s)+u2

2(s))(u
2
3(s)+u2

4(s)),

defines t as an invertible differentiable function of s, i.e., t = θ(s) with θ(0) = 0 and θ′(s) = 0 when

s= (2k+1)s0 for k∈Z. The symmetry SF satisfies SFγ(s) = γ(s+2s0) and−γ(s) = S2
Fγ(s) = γ(s+

4s0). The symmetry SG satisfies SGγ(s) = γ(2s0− s), and so γ(s) has a time-reversing symmetry.

The angular momentum (6.5) for γ(s) at s = 0 is

A =
1
2
[
− v1u2 + v2u1− v3u4 + v4u3

]
= ρ2ζ1−ρ1ζ2 = 0.
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The extended solution γ(s) gives a singular symmetric solution

z(t) = (x1(t),x2(t),x3(t),x4(t),ω1(t),ω2(t),ω3(t),ω4(t)),

of the PPS4BP with m = 1. Under the Ansätz, the components of z(t) satisfies x4(t) = x1(t),

x3(t) = x2(t), |x2(t)| ≤ x1(t), ω4(t) = ω1(t), ω3(t) = ω2(t), where

x1(t) =
u2

1(s)−u2
2(s)+u2

3(s)−u2
4(s)

2
,

x2(t) = u1(s)u2(s)+u3(s)u4(s),

ω1(t) =
v1(s)u1(s)− v2(s)u2(s)

2(u2
1(s)+u2

2(s))
+

v3(s)u3(s)− v4(s)u4(s)
2(u2

3(s)+u2
4(s))

,

ω2(t) =
v1(s)u2(s)+ v2(s)u1(s)

2(u2
1(s)+u2

2(s))
+

v3(s)u4(s)+ v4(s)u3(s)
2(u2

3(s)+u2
4(s))

,

for s = θ−1(t). The components of the extended solution γ(s) satisfy u3(0) = u1(0), u4(0) =

−u2(0), u1(0)u2(0)< 0, |u2(0)|= (
√

2−1)|u1(0)|, v3(0) =−v1(0), v4(0) = v2(0),

v1(0)u2(0)+ v2(0)u1(0) = ρ1ζ2 +ρ2ζ1 =

√√
2−1 ϑ

21/4 > 0,

and

v2(0)u2(0)− v1(0)u1(0) = ρ2ζ2−ρ1ζ1 =

√√
2−1 ϑ

21/4 .

From Lemma 6.1, it follows that x1(0)> 0, x2(0) = 0, ω1(0) = 0, and ω2(0)> 0. Set R = θ(T/2).

Since γ(4s0) =−γ(0), it follows that x1(R) = x1(0), x2(R) = x2(0), ω1(R) = ω1(0), and ω2(R) =

ω2(0). Thus the singular symmetric solution z(t) has period R. By the construction of the extension

of γ(s) given in Lemma 6.3, there holds

∫ (k+1)s0

ks0

(u2
1(s)+u2

2(s))(u
2
3(s)+u2

4(s)) ds =
∫ s0

0
(u2

1(s)+u2
2(s))(u

2
3(s)+u2

4(s)) ds

for all k = 1, . . . ,7. This implies that R/4 = θ((k+1)s0)−θ(ks0) for all k = 0,1, . . . ,7. The first
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regularized SBC for γ(s) occurs at s = s0, and this corresponds to t = θ(s0) = R/4. The next

regularized SBC for γ(s) occurs at s = 3s0, and this corresponds to

t = θ(3s0) = (θ(3s0)−θ(2s0))+(θ(2s0)−θ(s0))+θ(s0) =
R
4
+

R
4
+

R
4
=

3R
4
.

Similarly, the regularized SBCs for γ(s) occurring at s = 5s0,7s0 correspond to t = 5R/4,7R/4.

Hence, for t ∈ [0,R], the periodic solution z(t) has SBCs as its only singularities, and these occur

at t = R/4,3R/4.

For a fixed but arbitrary ε > 0, the value of ε−2Ê is a fixed but arbitrary negative real number.

By Lemma 6.2, the scaled extended solution

γε(s) = (εu1(εs),εu2(εs),εu3(εs),εu4(εs),v1(εs),v2(εs),v3(εs),v4(εs))

is a periodic solution for the Hamiltonian system of equations (6.3) with Hamiltonian Γ̂ on the

level set Γ̂ = 0, having period ε−1T and energy ε−2Ê < 0. By an argument similar to above, γε(s)

satisfies the required conditions.

6.6 NUMERICAL ESTIMATES IN THE EQUAL MASS CASE

In the equal mass case, there is by Theorem 6.5 a time-reversible periodic orbit γ(s) for the Hamil-

tonian system of equations with Hamiltonian Γ̂ on the level set Γ̂ = 0 with period T . The compo-

nents u1(s), u2(s), u3(s), u4(s), v1(s), v2(s), v3(s), v4(s) of γ(s) satisfy Equations (6.7) and (6.8).

The D4 symmetry group of γ(s) is generated by SFγ(s) = γ(s+ T/4) and SGγ(s) = γ(T/4− s).

Under the linear symplectic transformation (6.10), (6.11), and (6.12) with multiplier µ (as given by

(6.13)), this gives a periodic orbit Q1(σ), Q2(σ), P1(σ), P2(σ) of the Hamiltonian system of equa-

tions (6.14) with Hamiltonian Γ on the level set Γ = 0, which by Lemma 6.4 satisfies Q1(0) = 1,

Q2(0) = 1, P1(0) =−ϑ, P2(0) = ϑ, Q1(σ0) = 0, Q2(σ0)> 0, P1(σ0) =−4(21/4), and P2(σ0) = 0
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Figure 6.2: The u1, u2, u3, u4, v1, v2, v3, v4 coordinates of the symmetric periodic SBC orbit γε(s)
for m = 1 and an ε > 1.

for some σ0 > 0 and ϑ > 0. In Chapter 5, we numerically estimated

σ0 ≈ 1.62047, ϑ≈ 2.57487.

The period of this periodic orbit is 8σ0 ≈ 12.96379 and its energy is E ≈ −2.99968. From the

linear symplectic transformation (6.10), (6.11), and (6.12), with multiplier µ and from Equations

(6.7) and (6.8), we have for the values of components of γ(0) the exact quantities

u1(0) = u3(0) = 2−1/4, −u2(0) = u4(0) = (
√

2−1)2−1/4,

and the estimates

v1(0) =−v3(0) =−
ϑ

2
√√

2−1
≈−2.00038,

v2(0) = v4(0) =
ϑ

√√
2−1

2
≈ 0.82859.

Since σ = s/µ, the period of γ(s) is T ≈ 8.46900. From Equation (6.9), the value of the energy for

γ(s) is Ê ≈−5.12077.
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The components of the scaled periodic orbit γε(s) for an ε > 1, shown in Figure 6.2, satisfy the

symmetries SFγε(s) = γε(s+Tε/4) and SGγε(s) = γε(Tε/4− s). We choose ε so that Tε = 2π, and

check the linear stability of γε(s). Using a Runge-Kutta order 4 algorithm with a fixed time step of

2π/50000, we computed Xε(2π). Two of the eigenvalues of Xε(2π) are 1. Numerical estimates of

the remaining eigenvalues of Xε(2π) are

−0.98887±0.14876i,

−0.99736±0.07264i,

0.99991±0.01371i,

which all have modulus one. Thus numerically, the periodic orbits γε(s) are linearly stable for all

ε > 0. The first complex conjugate pair of eigenvalues for Xε(2π) matches the complex conjugate

pair of characteristic multipliers for the periodic orbit Q1(σ), Q2(σ), P1(σ), P2(σ) of the Hamil-

tonian system of equations (6.14) with Hamiltonian Γ, corresponding to γ1(s) = γ(s), where we

computed [27] the real part of the complex conjugate pair of modulus one to be −0.9888840619.

Because, by a lengthly computation, J∇2Γ̂(γε(s)) is not block diagonal, the last two complex con-

jugate pairs of eigenvalues of Xε(2π) are not repeats of the characteristic multipliers of the periodic

orbit Q1(σ), Q2(σ), P1(σ), P2(σ).

Figure 6.1 illustrates the curves in the physical plane that the four equal masses follow in the

linearly stable SBC orbit z(t) = (x1(t), x2(t), x3(t), x4(t), ω(t), ω2(t), ω3(t), ω4(t)) of the PPS4BP,

corresponding to γε(s) with ε = 1/(2−
√

2). The initial conditions for z(t) are

x1(0) = x4(0) = 1, x2(0) = x3(0) = 0, ω1(0) = ω4(0) = 0, ω2(0) = ω3(0)≈ 1.28743.

The value of ε= 1/
√

2−
√

2 here for the scaling is determined by the equation x1(0) = ε2(u2
1(0)−

u2
2(0)) coming from Lemma 6.1 and the canonical transformations (6.1) and (6.2) applied to the

scaled periodic solution γε(s), together with the initial condition x1(0)= 1, where t = 0 corresponds

to s = 0. The value of the Hamiltonian H along z(t) is ε−2Ê ≈−2.999682732.
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CHAPTER 7. LINEAR STABILITY OF THE PAIRWISE EQUAL-MASS PLANAR

ORBIT

7.1 INTRODUCTION

The results presented in this chapter were originally published as [30]. We apply Roberts’ symme-

try reduction method to a one-parameter family of symmetric singular periodic orbits in the planar

pairwise symmetric four-body problem (PPS4BP) where the parameter is a mass m∈ (0,1] and the

singularities are regularizable simultaneous binary collisions (SBCs). We recall in Section 7.2 the

notation we used in [28] for the PPS4BP. (The PPS4BP is the Caledonian symmetric four-body

problem [42] without its collinear restrictions on the initial conditions.) To compute the nontrivial

characteristic multipliers of these periodic orbits we numerically integrated the linearized regular-

ized equations along each regularized periodic orbit over only one-eighth of its period. This shows

that numerically these symmetric singular periodic orbits experience several changes in their linear

stability type (linearly stable, spectrally stable, or linearly unstable) as m is varied over (0,1].

In this case, we use Roberts’ symmetry reduction method to analytically factor out two of the

trivial characteristic multipliers, leaving the numerical computations to estimate the two pairs of

nontrivial characteristic multipliers and one pair of trivial characteristic multipliers. The details

of these computations are given in Section 7.3. Two surprises here are the intervals [0.21,0.22]

and [0.23,0.26] where we have linear stability. Long-term numerical integrations of the regular-

ized equations for these periodic orbits (starting at our numerical approximations of their initial

conditions and over 100932 periods) suggest instability for m in these two intervals.

7.2 LINEAR STABILITY OF THE PPS4BP

We use the same notatons from Chapter 6 for the PPS4BP, its regularized Hamiltonian, and prop-

erties of the regularized one-parameter family of symmetric SBC period orbits.

We apply Roberts’ symmetry reduction method [1] to the one-parameter family of periodic
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orbits γ(s;m), 0 < m≤ 1, of fixed period 2π, in the regularized Hamiltonian system (6.3). Let ∇2Γ̂

denote the symmetric matrix of second-order partials of Γ̂ with respect to the components of z. It

is easily shown, that if Y (t) is the fundamental matrix solution of the linearized equations along

γ(s;m),

ξ
′ = J∇

2
Γ̂(γ(s))ξ, ξ(0) = Y0,

for an invertible Y0, then the eigenvalues of Y−1
0 Y (2π) are indeed the characteristic multipliers of

γ(s;m).

7.2.1 Stability Reductions using Symmetries. We use the symmetries of γ(s;m) to show that

Y−1
0 Y (2π) can be factored in part by terms of the form Y (π/4), that is, one-eighth of the period of

γ(s;m). Thus the symmetries of γ(s;m) will reduce the analysis of its linear stability type to the

numerical computation of Y (π/4).

Lemma 7.1. For each 0<m≤ 1, there exists a matrix W such that Y−1
0 Y (2π)=W 4 where W =ΛD

for involutions Λ and D with Λ = Y−1
0 ST

FSGY0 and D = B−1SGB for B = Y (π/4).

Proof. Each γ(s;m) satisfies SFγ(s;m) = γ(s+π/2;m). Then (by [1], see also [27]), we have that

Y (kπ/2) = Sk
FY0(Y−1

0 ST
FY (π/2))k

holds for all k ∈ N. Since S4
F = I, taking k = 4 gives

Y (2π) = Y0(Y−1
0 ST

FY (π/2))4. (7.1)

Furthermore, each γ(s;m) satisfies SGγ(s;m) = γ(π/2− s;m). Then (by [1], see also [27]), for

B = Y (π/4)

we have that

Y (π/2) = SGY0B−1ST
GB = SGY0B−1SGB, (7.2)
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where we have used ST
G = SG. Combining equations (7.1) and (7.2) gives the factorization

Y (2π) = Y0(Y−1
0 ST

FSGY0B−1SGB)4.

By setting

Q = ST
FSG and W = Y−1

0 QY0B−1SGB,

we obtain

Y−1
0 Y (2π) = (Y−1

0 QY0B−1SGB)4 =W 4,

where

Λ = Y−1
0 QY0 and D = B−1SGB

are both involutions, i.e., Λ2 = D2 = I.

7.2.2 A Choice of Y0. The matrix Q = ST
FSG that appears in Λ is orthogonal since SF and SG

are both orthogonal. Furthermore, Q is symmetric and its eigenvalues are ±1, each of multiplicity

4. An orthogonal basis for the eigenspace ker(Q− I) is



0

0

0

0

0

1

0

1



,



0

0

0

0

−1

0

1

0



,



0

−1

0

1

0

0

0

0



,



1

0

1

0

0

0

0

0



,
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and an orthogonal basis for the eigenspace ker(Q+ I) is



0

0

0

0

1

0

1

0



,



0

1

0

1

0

0

0

0



,



0

0

0

0

0

−1

0

1



,



−1

0

1

0

0

0

0

0



.

We look for an appropriate choice of Y0 such that

Λ = Y−1
0 QY0 =

I 0

0 −I

 . (7.3)

Lemma 7.2. There exists an orthogonal and symplectic Y0 such that Equation (7.3) holds.

Proof. Since the components of γ(s;m) satisfy the relations

u3(0;m) = u1(0;m), u4(0;m) =−u2(0;m), (7.4)

v3(0;m) =−v1(0;m), v4(0;m) = v2(0;m), (7.5)

then using the Hamiltonian system (6.3) on the level set Γ̂ = 0, the components of γ ′(0;m) satisfy

u′3(0;m) =−u′1(0;m), u′4(0;m) = u′2(0;m), v′3(0;m) = v′1(0;m), v′4(0;m) =−v′2(0;m).

It is easily recognized that the vector γ ′(0;m) belongs to ker(Q+ I). Now set

a = u′1(0;m), b = u′2(0;m), c = v′1(0;m), d = v′2(0;m), e = ‖γ ′(0;m)‖
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and define Y0 by

Y0 =
1
e



c d a b a −b −c d

d −c b −a b a −d −c

c d a b −a b c −d

−d c −b a b a −d −c

−a b c −d c d a b

−b −a d c d −c b −a

a −b −c d c d a b

−b −a d c −d c −b a



. (7.6)

Let coli(Y0) denote the ith column of Y0. Notice that col5(Y0) = γ ′(0;m)/‖γ ′(0;m)‖. The last four

columns of Y0 form an orthonormal basis for ker(Q+ I), while the first four columns of Y0 form an

orthonormal basis for ker(Q− I). Since Q is symmetric, its two eigenspaces are orthogonal, and so

Y0 is orthogonal. Note that Jcol4+i(Y0) = coli(Y0) for i = 1,2,3,4; in other words, multiplication

by J maps ker(Q− I) bijectively to ker(Q+ I). For P1 the lower right 4×4 submatrix of Y0 and P2

the upper right 4×4 submatrix of Y0, we have

Y0 =

J

P2

P1

 ,
P2

P1


=

 P1 P2

−P2 P1

 ,
where PT

1 P1 +PT
2 P2 = I and PT

1 P2 = 0. These implies that Y0 is symplectic.

7.2.3 The Existence of K. By Lemma 7.1 we have Y−1
0 Y (2π) = W 4 where W = ΛD with

Λ = Y−1
0 QY0 and D = B−1SGB for B = Y (π/4). By Lemma 7.2, there exists an orthogonal and

symplectic Y0 such that Equation (7.3) holds. Choose Y0 as given in Equation (7.6). The matrix

W = ΛD is then symplectic, i.e., W T JW = J, because Λ is symplectic with multiplier−1, ΛT JΛ =

−J, and SG is symplectic with multiplier −1, ST
GJSG =−J, and B is symplectic.

Lemma 7.3. With the given choice of Y0, there exists a matrix K uniquely determined by B =
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Y (π/4) such that

1
2
(
W +W−1)=

KT 0

0 K

 .
Proof. Since W = ΛD where Λ and D are involutions, it follows that

W−1 = DΛ.

By the choice of Y0, the form of the matrix Λ is given in Equation (7.3). If we partition the

symplectic matrix B into the four 4×4 submatrices,

B =

A1 A2

A3 A4

 , (7.7)

then the form of the inverse of B is

B−1 =

 AT
4 −AT

2

−AT
3 AT

1

 .
Set

H =

−G 0

0 G

 .
Then we have that

D = B−1SGB =

 KT L1

−L2 −K


where K = AT

3 HA2 +AT
1 HA4, L1 = AT

4 HA2 +AT
2 HA4, and L2 = AT

3 HA1 +AT
1 HA3. It follows that

K is uniquely determined by B, that

W = ΛD =

I 0

0 −I


KT L1

L2 −K

=

KT L1

L2 K

 , (7.8)
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and that

W−1 = DΛ =

KT L1

L2 −K


I 0

0 −I

=

 KT −L1

−L2 K

 .
Thus

1
2
(
W +W−1)=

KT 0

0 K

 (7.9)

for a K uniquely determined by B = Y (π/4) as was desired.

7.2.4 The Form of K. We will show that one of the eigenvalues of K is 1, and the remaining

three eigenvalues of K are determined by the lower right 3× 3 submatrix of K. Let ci denote the

ith column of B = Y (π/4).

Lemma 7.4. With the given choice of Y0, the matrix K uniquely determined by B = Y (π/4) is



1 ∗ ∗ ∗

0 cT
2 SGJc6 cT

2 SGJc7 cT
2 SGJc8

0 cT
3 SGJc6 cT

3 SGJc7 cT
3 SGJc8

0 cT
4 SGJc6 cT

4 SGJc7 cT
4 SGJc8


.

Proof. We begin by showing that 1 is an eigenvalue of W by identifying a corresponding eigen-

vector. Since Y (π/2) = SGY0B−1SGB (Equation 7.2) and Q = ST
FSG, it follows that

W = Y−1
0 QY0B−1SGB

= Y−1
0 ST

FSGY0B−1SGB

= Y−1
0 ST

FY (π/2).

Set

v = Y−1
0 γ

′(0;m).
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The orthogonality of Y0 and col5(Y0) = γ ′(0;m)/‖γ ′(0;m)‖ imply that

v = Y T
0 γ
′(0;m) = ‖γ ′(0;m)‖e5,

where e5 = [0,0,0,0,1,0,0,0]T . Since Y (s) is a fundamental matrix, then γ ′(s;m)=Y (s)Y−1
0 γ ′(0;m).

Hence,

Wv = Y−1
0 ST

FY (π/2)v

= Y−1
0 ST

FY (π/2)Y−1
0 γ

′(0;m)

= Y−1
0 ST

Fγ
′(π/2;m).

Since SFγ(s;m) = γ(s+π/2;m) and S−1
F = ST

F , we have that

γ
′(s;m) = S−1

F γ
′(s+π/2;m) = ST

Fγ
′(s+π/2;m).

Setting s = 0 in this gives

γ
′(0;m) = ST

Fγ
′(π/2;m).

From this it follows that

Wv = Y−1
0 ST

Fγ
′(π/2;m)

= Y−1
0 γ

′(0;m)

= v.

Thus 1 is an eigenvalue of W and v = ‖γ ′(0;m)‖e5 is a corresponding eigenvector.

Next, we show that the first column of K is [1,0,0,0]T . Since Wv = v, then We5 = e5. From
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the form of W given in Equation (7.8), it follows that

e5 =We5 =

L1[1,0,0,0]T

K[1,0,0,0]T

 .
This implies that

K



1

0

0

0


=



1

0

0

0


.

from which it follows that the first column of K is [1,0,0,0]T .

Finally we show that the lower right 3×3 submatrix of K has the prescribed entries. Since Y0

is symplectic, the matrix B = Y (π/4) is symplectic. Hence B satisfies J = BT JB, and so

B−1 =−JBT J.

For W = ΛD with D = B−1SGB where SG satisfies SGJ =−JSG we then obtain

W = ΛB−1SGB

= Λ(−JBT J)SGB

=−ΛJBT JSGB

=−ΛJBT (−SGJ)B

= ΛJBT SGJB.

Writing B in the block partition form given in Equation (7.7), it follows that

ΛJBT =

0 I

I 0

BT =

0 I

I 0


AT

1 AT
3

AT
2 AT

4

=

AT
2 AT

4

AT
1 AT

3

 . (7.10)
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Let coli(SGJB) denote the ith column of SGJB. Then coli(SGJB) = SGJci where ci is the ith column

of B = Y (π/4). This and Equation (7.10) imply that the (i, j) entry of W is then cT
i SGJc j. But

Equation (7.8) implies that the (6,6) entry of W is the (2,2) entry of K. Continuing in this manner

we find the remaining entries of the lower right 3×3 submatrix of K to be given as prescribed.

7.2.5 A Stability Theorem. The characteristic multipliers of γ(s;m) are the eigenvalues of W 4

which are the fourth powers of the eigenvalues of W . As was shown in the proof of Lemma

7.4, an eigenvalue of K is 1. Because of Equation (7.9), an eigenvalue of W is 1 with algebraic

multiplicity (at least) 2. This accounts for two of the four known eigenvalues of 1 for W 4. Our

numerical calculations show that −1 is an eigenvalue of K and hence of W for all 0 < m≤ 1. This

accounts for the remaining two known eigenvalues of 1 for W 4.

A symplectic matrix is called spectrally stable if:

1. All of its eigenvalues must have modulus one.

2. It has a pair of eigenvalues which are equal and that do not correspond to the invariant

quantities from Chapter 2.

This condition is weaker than linear stability, which requires that no repeated eigenvalues occur,

other than the repeated ±1 eigenvalues from the conserved quantities.

When W is spectrally stable, the eigenvalues of K are the real parts of the eigenvalues of W . If

0 is an eigenvalue of K, then ±i are eigenvalues of W and so the algebraic multiplicity of 1 as an

eigenvalue of W 4 is at least 6. If 1/
√

2 is an eigenvalue of K, then 1/
√

2± i/
√

2 are eigenvalues

of W , and if −1/
√

2 is and eigenvalue of K, then −1/
√

2± i/
√

2 are eigenvalues of W ; both

these imply that −1 is a repeated eigenvalue of W 4. So when the remaining two eigenvalues λ1

and λ2 of K are real, distinct, have absolute value strictly smaller than one, and none of them

are equal to 0 or ±1/
√

2, then the symmetric periodic SBC orbit is linearly stable, i.e., W , and

hence W 4, is spectrally stable as well as semisimple when restricted to the four dimensional W -

invariant subspace of R8 determined by the two distinct modulus one complex conjugate pairs of

eigenvalues of W . On the other hand, if one of λ1 or λ2 is real with absolute value bigger than 1, or
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is complex with a nonzero imaginary part, then the symmetric periodic SBC orbit is not spectrally

stable, but is linearly unstable. The proof of the following result about the linear stability type for

the symmetric periodic SBC orbits in the PPS4BP follows from all of the Lemmas and subsequent

comments presented in this Section.

Theorem 7.5. The symmetric periodic SBC orbit γ(s;m) of period T = 2π and energy Ê(m) is

spectrally stable in the PPS4BP if and only if λ1 and λ2 are real and have absolute value smaller

or equal to 1. If λ1 and λ2 are real, distinct, have absolute value strictly smaller than 1, and none

of them are equal to 0 or ±1/
√

2, then γ(s;m) is linearly stable in the PPS4BP.

7.3 NUMERICAL RESULTS

We computed Y (π/4) using our trigonometric polynomial approximations of γ(s;m) for each m

starting at m = 1 and decreasing by 0.01 until we reached m = 0.01, and the Runge-Kutta order 4

algorithm coded in MATLAB, with a fixed time step of

π/4
50000

=
π

200000
.

From the needed columns of Y (π/4), we computed the entries of the lower right 3×3 submatrix

of K as given in Lemma 7.4, and then computed the eigenvalues λ1, λ2, and λ3 of this 3×3 matrix.

We have plotted these three eigenvalues, when real, as functions of m in Figure 7.3. One of these

eigenvalues is real and stays close to −1 for all m ∈ (0,1] except at m = 0.20; label this eigenvalue

λ3.

The remaining two eigenvalues λ1 and λ2 of K that determine the linear stability type of γ(s;m)

are for m = 0.01 near 1 and not shown, respectively, in Figure 7.3. The values of λ1 and λ2 at

m = 0.01 are (approximately) 0.97431, and −50.70044 respectively. As m increases from 0.01,

the value of λ1 decreases, crossing 1/
√

2 for some m in (0.09,0.10), and crossing 0 for some m

in (0.26,0.27), while λ2 increases to the value −1.14602 at m = 0.19, momentarily disappearing

at m = 0.20, reappearing at m = 0.21 with a value of −0.86414, continuing to increase, crossing
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Figure 7.1: The eigenvalues λ1, λ2, λ3, when real, of the 3× 3 lower right submatrix of K over
0 < m≤ 1.

−1/
√

2 for a value of m in (0.22,0.23), until at some value of m in (0.26,0.27), we have λ1 = λ2 <

0. For m in [0.27,0.53], the eigenvalues λ1 and λ2 form a complex conjugate pair with nonzero

imaginary part, and thus disappear in Figure 7.3. For some value of m in (0.53,0.54), we have λ1

and λ2 reappearing in Figure 7.3, with λ1 = λ2 > 0. As m increases from there, λ1 increases and

λ2 decreases, with λ1 crossing 0 for a value of m in (0.54,0.55), and with the values of λ1 and λ2

at m = 1 being respectively,

0.69414,−0.68022, (7.11)

where the first of these is slightly smaller than 1/
√

2, and the latter is slighter larger than −1/
√

2.

These changes in the values of λ1 and λ2 account for the changes in the linear stability type of

γ(s;m) as m varies over (0,1].

From the numerical results and Theorem 7.5, we conclude that the periodic orbit γ(s;m) is

linearly stable when m is in [0.21,0.22], or m is in [0.23,0.25], m = 0.54, or m is in [0.55,1]. We

have linear instability when m is in [0.01,0.19] or in [0.27,0.53]. We have at least spectral stability

when m = 0.20 where λ3 disappears momentarily along with λ2 to form the complex conjugate
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pair with nonzero imaginary part,

−0.99726±0.00865i.

This appears numerically to be a repeated eigenvalue of −1 for K. We also have at least spectral

stability for a value of m in (0.22,0.23), and for a value of m in (0.54,0.55).

We have confirmed that numerically the equal mass symmetric periodic SBC orbit γ(s;1) is

linearly stable in the PPS4BP. From the eigenvalues of K, which are 1, −1, and those listed in

(7.11), the characteristic multipliers of γ(s;1) are 1 with algebraic multiplicity 4, and the two

distinct complex conjugate pairs of modulus one,

−0.98887±0.14877,

−0.99736±0.07265i.

These agree numerically with the eigenvalues of the monodromy matrix for γ(s;1) of Chapter 6.

To get a better estimate of the value of m between 0.54 and 0.55 at which the orbit γ(s;m)

loses spectral stability as m decreases, we numerically computed Y (π/4) for the values of m =

0.531,0.532, . . . ,0.538,0.539, and then computed the values of λ1 and λ2. These show for m =

0.531 through m = 0.538 that γ(s;m) is linearly unstable because λ1 and λ2 form a complex con-

jugate pair with nonzero imaginary part. For m = 0.539, we have that γ(s;m) is linearly stable

because

λ1 = 0.14253, λ2 = 0.08595,

which are real, distinct, have absolute value smaller than 1, and are not equal to 0 or ±1/
√

2.

These eigenvalues of K imply that the characteristic multipliers of γ(s;0.539) are 1 with algebraic
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multiplicity 4, and the two complex conjugate pairs

0.84079±0.54136i,

0.94134±0.33747i,

with each one of these having modulus 1. Thus the value of m in [0.53,0.54] at which γ(s;m) is at

least spectrally stable, lies in the interval (0.538,0.539).
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CHAPTER 8. THE RHOMBOIDAL ORBIT AND ITS LINEAR STABILITY

8.1 INTRODUCTION

The chief aim of this chapter is to give stability results, including linear stability, for the symmet-

ric mass rhomboidal orbit in both a four-degrees-of-freedom (4DF) and a two-degrees-of-freedom

(2DF) setting at the same time. With our choice of coordinates in the 4DF setting, the linearized

phase space of the regularized equations has an elegant decomposition into two invariant sub-

spaces. The linear stability analysis in the 2DF setting corresponds to one of these subspaces.

Additionally, we are able to use analytic techniques to reduce the linear stability analysis of the

numerical calculation of three entries of a 4×4 matrix K related to the monodromy matrix. Chief

among these techniques is using angular momentum, which is not “factored out” by a coordinate

transformation, to give relations among the entries of K.

The results presented in this chapter were originally published as [31].

The remainder of this chapter is as follows: In Section 8.2, we describe the orbit and some

of its properties. In 8.2.1, we give formal notation describing the orbit. We also perform the

coordinate transformation that regularizes the collisions. Section 8.2.2 gives an analytic proof of

the existence of the orbit in the regularized 4DF setting. Section 8.3 describes the symmetries of

the orbit, which are needed to perform the stability analysis in 8.4. Section 8.4.1 describes all of

the remaining linear stability analysis that can be done before any numerical work, including the

decomposition into two invariant sets mentioned earlier.

Lastly, in Section 8.5, we present the results obtained from the numerical calculations. As

mentioned, the 4DF stability result will immediately give a stability result in a 2DF invariant set.

In 8.5.1, we detail the result in both cases. In the linearly stable 2DF setting, we perform further

analysis with a Poincaré section in 8.5.2.

8.2 THE RHOMBOIDAL SYMMETRIC-MASS PROBLEM
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Figure 8.1: The rhomboidal four-body orbit.

8.2.1 Setting and Regularization. We consider the planar Newtonian 4-body problem with

bodies located at

(x1,x2),(x3,x4),(−x1,−x2),(−x3,−x4) (8.1)

and masses 1, m, 1, m respectively for some m∈ (0,1]. (Throughout the chapter, we will often refer

to this as the four-degrees-of-freedom, or 4DF, setting.) For the periodic orbit, the bodies travel

along the x and y axes, forming the vertices of a rhombus at all times away from collision. At the

time of collision between the two bodies on the x-axes, the other two bodies have zero momentum.

Similarly, at the time of collision between the two bodies on the y-axes, the other two bodies have

zero momentum. (See Figure 8.1.)

The Hamiltonian for this system is given by H = K−U , where

K =
1
4
(
w2

1 +w2
2
)
+

1
4m

(
w2

3 +w2
4
)

where the wi are the conjugate momenta defined by

w1 = 2ẋ1, w2 = 2ẋ2, w3 = 2mẋ3, w4 = 2mẋ4,
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and

U =
1

2
√

x2
1 + x2

2

+
m2

2
√

x2
3 + x2

4

+
2m√

(x3− x1)2 +(x4− x2)2
+

2m√
(x3 + x1)2 +(x4 + x2)2

.

The angular momentum for the system is given by

A = x1w2− x2w1 + x3w4− x4w3.

We can regularize the system under a change of spatial variables and a re-scaling of time.

Define

F = w1(Q2
1−Q2

2)+2w2Q1Q2 +2w3Q3Q4 +w4(Q2
4−Q2

3).

As a generating function, F induces the canonical change of variables (xi,wi)↔ (Qi,Pi) given by

x1 = Q2
1−Q2

2 P1 = 2w1Q1 +2w2Q2

x2 = 2Q1Q2 P2 =−2w1Q2 +2w2Q1

x3 = 2Q3Q4 P3 = 2w3Q4−2w4Q3

x4 = Q2
4−Q2

3 P4 = 2w3Q3 +2w4Q4.

Each of the Pi is linear in wi. Solving the resulting system of equations yields

w1

w2

=
1

2(Q2
1 +Q2

2)

Q1 −Q2

Q2 Q1


P1

P2


and w3

w4

=
1

2(Q2
3 +Q2

4)

 Q4 Q3

−Q3 Q4


P3

P4

 .
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Setting Q = Q2
1Q3Q4−Q2

2Q3Q4−Q1Q2Q2
3 +Q1Q2Q2

4, we now have

K =
1
16

(
P2

1 +P2
2

Q2
1 +Q2

2

)
+

1
16m

(
P2

3 +P2
4

Q2
3 +Q2

4

)
, (8.2)

U =
1

2(Q2
1 +Q2

2)
+

m2

2(Q2
3 +Q2

4)
(8.3)

+
2m√

(Q2
1 +Q2

2)
2 +(Q2

3 +Q2
4)

2−4Q
+

2m√
(Q2

1 +Q2
2)

2 +(Q2
3 +Q2

4)
2 +4Q

,

and

A =
1
2
(Q1P2−Q2P1 +Q3P4−Q4P3) . (8.4)

Finally, to regularize the collisions at the origin we multiply by a change of time satisfying dt
ds =

(Q2
1 +Q2

2)(Q
2
3 +Q2

4). This gives regularized Hamiltonian Γ in extended phase space:

Γ =
dt
ds

(H−E), (8.5)

where H =K−U , with K and U as given in Equations 8.2 and 8.3. At the time of collision between

the two bodies of mass 1, we have Q1 = Q2 = 0. The condition Γ = 0 then yields

(Q2
3 +Q2

4)

(
P2

1 +P2
2

16
− 1

2

)
= 0

and so at collision the momenta P1 and P2 are both finite and satisfy P2
1 +P2

2 = 8. Similarly, when

Q3 = Q4 = 0, we get

(Q2
1 +Q2

2)

(
P2

3 +P2
4

16m
− m2

2

)
= 0

so the momenta P3 and P4 are both finite and satisfy P2
3 +P2

4 = 8m3.

8.2.2 Analytic Existence of the Orbit. We will next demonstrate the existence of the orbit

that we described in Section 8.2.1. Portions of the proof depend on arguments given by Yan [24],

80



www.manaraa.com

Shibayama [13], and Martinez [25]. Each of these studied the orbit in a two-degrees-of-freedom

(2DF) configuration.

Theorem 8.1. The periodic rhomboidal symmetric-mass orbit described in Section 8.2.1 analyti-

cally exists for the Hamiltonian system given by Γ.

Proof. Let A denote the set where

x2 = x3 = w2 = w3 = 0, x1 ≥ 0, and x4 ≥ 0.

This corresponds to the regularized coordinates

Q2 = Q3 = P2 = P3 = 0. (8.6)

Then, when A holds, the four bodies and their respective momenta lie on the x- and y-axes. We

also have

Q2
i = xi, wi =

Pi

2Qi
, for i = 1,4,

which are the same coordinate transformations used in [24]. Furthermore, we have

Q̇2
∣∣
A = Q̇3

∣∣
A = Ṗ2

∣∣
A = Ṗ3

∣∣
A = 0,

so A is invariant. Furthermore, if we consider Γ|A , with Γ as defined in (8.5), we get exactly the

same regularized Hamiltonian as in [24] (with the mass parameter m added). Also, we have

Γ|A =
dt
ds

(H|A −E)

for the same value of E as in (8.5). This is precisely the same regularized 2DF Hamiltonian as

in [24] (with the mass parameter m added). Since analytic existence of the 2DF problem in the

equal-mass case was given in [24], and in the 1, m, 1, m case was given in [13], analytic existence

in the 4DF setting follows from the invariance of A .
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As a further consequence of the invariant set A , initial conditions for the periodic orbit in

the 2DF setting automatically give the initial conditions for the 4DF setting. This is very useful

numerically as it reduces the number of calculations required to find initial conditions.

8.3 SYMMETRIES OF THE ORBIT

In order to utilize the techniques developed by Roberts, it is necessary to first identify the symme-

tries of the periodic orbit.

Lemma 8.2. The regularized Hamiltonian Γ has symmetry group isomorphic to the Klein four

group.

Proof. Let

G =

1 0

0 −1

 ,
and define the block matrix

S =



−G 0 0 0

0 −G 0 0

0 0 G 0

0 0 0 G


, (8.7)

where 0 represents the 2×2 zero matrix. Then we have

S2 = (−S)2 = I

Hence, S and −S generate a group isomorphic to the Klein four group. For fixed values of m and

E, let γ = (Q1,Q2,Q3,Q4,P1,P2,P3,P4). Then we have

Γ◦ (±Sγ) = Γ(γ),

as the changes of sign prescribed by S leave K from Equation 8.2 invariant and switch the roles of
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−4Q and +4Q in Equation 8.3. So ±S generate a Klein-four symmetry group for Γ as well.

Symmetries for Γ also help to determine symmetries for the periodic orbit.

Theorem 8.3. Let γ be a solution to the Hamiltonian system defined by Γ for some fixed values of

m ∈ (0,1] and E < 0 such that

γ(0) = (0,0,0,ζ4,
√

8,0,0,0)

and

γ(s0) = (ζ1,0,0,0,0,0,0,
√

8m3).

(In other words, γ(0) corresponds to collision between the two bodies of mass 1, and γ(s0) cor-

responds to collision between the two bodies of mass m. Furthermore, the non-colliding bodies

have zero momentum at the time of collision of the other two bodies.) Then γ extends to a T = 4s0-

periodic solution of the same Hamiltonian system, wherein S and−S are time-reversing symmetries

for the orbit.

Proof. Note that if γ(s) is a T -periodic solution to the regularized equations of motion resulting

from 8.5, a standard calculation shows that both −Sγ(T/2− s) and Sγ(T − s) are solutions as well.

Existence and uniqueness of solutions then imply that

−Sγ(T/2− s) = γ(s) = Sγ(T − s)

for all s. Hence the symmetry group for the rhomboidal four-body orbit is isomorphic to the Klein

four group, with S and −S as generators.
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8.4 STABILITY REDUCTION USING SYMMETRIES

Note that the matrix S given in (8.7) satisfies all the hypotheses of Lemma 3.3. Applying Corollary

3.4 with N = 2, S as defined in (8.7), and noting that ST = S yields

Y (T/2) = SY0Y (T/4)−1SY (T/4).

Similarly, if N = 1, since S2 = I, we get

Y (T ) =−SY0Y (T/2)−1(−S)Y (T/2)

= SY0[SY0Y (T/4)−1SY (T/4)]−1S[SY0Y (T/4)−1SY (T/4)]

= SY0Y (T/4)−1SY (T/4)Y−1
0 SY0Y (T/4)−1SY (T/4).

This yields

Y−1
0 Y (T ) = Y−1

0 SY0Y (T/4)−1SY (T/4)Y−1
0 SY0Y (T/4)−1SY (T/4)

= [Y−1
0 SY0Y (T/4)−1SY (T/4)]2

=W 2

with W =Y−1
0 SY0Y (T/4)−1SY (T/4). Hence, in order to analyze the stability of the orbit, we need

only compute the entries of Y along a quarter of the orbit.

We now show that there is an appropriate choice of Y0 for which W has the required form,

further reducing the stability calculations for the orbit. If we let

Λ =

I 0

0 −I

 , (8.8)
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then setting

Y0 =



0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1



(8.9)

yields −Y−1
0 SY0 = Λ. (The lines here are provided for ease in reading. Much of our later analysis

will involve breaking 8×8 matrices down into 4×4 blocks.) Furthermore, it is easy to check that

Y0 is both orthogonal and symplectic. If we set D =−B−1SB for B = Y (T/4), we then have

W = ΛD.

Also, since Λ2 = D2 = I, we know immediately that

W−1 = DΛ.

Since B = Y (T/4) is symplectic, setting

B =

B1 B2

B3 B4

 and S =

S1 0

0 −S1


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gives

D =−B−1SB

=−

 KT L1

−L2 K

 ,
where L1, L2, and K are 4×4 matrices satisfying L1 = BT

4 S1B2+BT
2 S1B4, L2 = BT

3 S1B1−BT
1 S1B3,

and K =−BT
2 S1B2−BT

1 S1B4. Thus,

W = ΛD =

KT L1

L2 K

 .
Similarly, we find that

W−1 = DΛ =

 KT −L1

−L2 K

 .
Thus, we have

1
2
(
W +W−1)=

KT 0

0 K

 . (8.10)

Remark. The given matrix Y0 in (8.9) is not unique. Different choices of Y0 are possible, but our

particular choice is helpful for much of our later analysis. It is also worth noting that our choice of

Y0 is independent of the value of m for this orbit, which is not always true (see Chapter 7.)

We can give formulas for the entries of K in terms of W . Since B is symplectic, we have

J = BT JB, and hence

B−1 =−JBT J.
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Using W = ΛD for D =−B−1SB and the relation −SJ = JS, we find

W = Λ(−B−1SB)

= ΛJBT JSB

=−ΛJBT SJB.

Directly computing ΛJ and using the block form of B, we find that

(ΛJ)BT =−

0 I

I 0


BT

1 BT
3

BT
2 BT

4

=−

BT
2 BT

4

BT
1 BT

3

 .
Define coli(−SJB) to be the ith column of the matrix −SJB. Then we have coli(−SJB) = −SJci

where ci is the ith column of B. Using the above two formulas, this implies that the (i, j) entry of

W is given by −cT
i SJC j. Equation (8.10) shows that the (i, j) entry of K is the (i+4, j+4) entry

of W . Hence,

K =



−cT
1 SJc5 −cT

1 SJc6 −cT
1 SJc7 −cT

1 SJc8

−cT
2 SJc5 −cT

2 SJc6 −cT
2 SJc7 −cT

2 SJc8

−cT
3 SJc5 −cT

3 SJc6 −cT
3 SJc7 −cT

3 SJc8

−cT
4 SJc5 −cT

4 SJc6 −cT
4 SJc7 −cT

4 SJc8


. (8.11)

Remark. Computing the entries of K this way will allow us to bypass computing W−1. This is

preferred as a numerical method as W may be very poorly conditioned.

8.4.1 Entries of K from Invariant Quantities. Before any numerical work is done, we can

determine many of the values of entries of K by using properties of the orbit. We first introduce
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some notation to simplify the analysis. Let M denote the set of matrices of the form



m11 0 0 m14

0 m22 m23 0

0 m32 m33 0

m41 0 0 m44


where all of the listed mi j ∈ R (mi j = 0 is permitted). Further, let M2 denote the set of 8× 8

matrices whose 4×4 blocks are in M . That is to say, M2 consists of matrices of the form

M1 M2

M3 M4


where each of the Mi ∈M . It is easy to check that M forms a ring with the standard definitions

of matrix addition and multiplication. Furthermore, each element of M with nonzero determinant

has its inverse in M as well. The same ring structure exists for M2.

The following two lemmas will help establish an important theorem about the form of K:

Lemma 8.4. If M ∈M2, then the system of differential equations given by

η
′ = M(s)η

and initial conditions

η(0) = (∗,0,0,∗,∗,0,0,∗)T

has solutions of the form

η(s) = ( f1(s),0,0, f4(s), f5(s),0,0, f8(s))T

88



www.manaraa.com

Proof. We verify that Mη has the proper form. Note that



∗ 0 0 ∗ ∗ 0 0 ∗

0 ∗ ∗ 0 0 ∗ ∗ 0

0 ∗ ∗ 0 0 ∗ ∗ 0

∗ 0 0 ∗ ∗ 0 0 ∗

∗ 0 0 ∗ ∗ 0 0 ∗

0 ∗ ∗ 0 0 ∗ ∗ 0

0 ∗ ∗ 0 0 ∗ ∗ 0

∗ 0 0 ∗ ∗ 0 0 ∗





∗

0

0

∗

∗

0

0

∗



=



∗

0

0

∗

∗

0

0

∗



.

Hence, the zeros in the 2nd, 3rd, 6th, and 7th are preserved under multiplication by M. Thus,

we can find equations f1(s), f4(s), f5(s), and f8(s) that are solutions to the four-equation system

restricted to the starred entries in the first, fourth, fifth, and eighth rows and columns. Inserting the

zero solution in the remaining entries yields

η(s) = ( f1(s),0,0, f4(s), f5(s),0,0, f8(s))T

is a solution of η′ = M(s)η.

Lemma 8.5. If M ∈M2, then the system of differential equations given by

η
′ = M(s)η

and initial conditions

η(0) = (0,∗,∗,0,0,∗,∗,0)T

has solutions of the form

η(s) = (0, f2(s), f3(s),0,0, f6(s), f7(s),0)T .
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Theorem 8.6. If Y0 is given by (8.9), then K ∈M .

Proof. Using a computer algebra system, we find that the matrix JD2Γ is of the form

 O I

−I O





∗ a a ∗ 0 0 a ∗

a ∗ ∗ a 0 0 a a

a ∗ ∗ a a a 0 0

∗ a a ∗ ∗ a 0 0

0 0 a ∗ ∗ 0 0 0

0 0 a a 0 ∗ 0 0

a a 0 0 0 0 ∗ 0

∗ a 0 0 0 0 0 ∗



=



0 0 a ∗ ∗ 0 0 0

0 0 a a 0 ∗ 0 0

a a 0 0 0 0 ∗ 0

∗ a 0 0 0 0 0 ∗

∗ a a ∗ 0 0 a ∗

a ∗ ∗ a 0 0 a a

a ∗ ∗ a a a 0 0

∗ a a ∗ ∗ a 0 0



.

Here, the zeros denote entries for which the mixed partials evaluate to zero identically, and the

entries denoted a are entries for which the mixed partials evaluate to zero assuming the conditions

given by (8.6) which hold along the periodic orbit γ(s). Under such conditions, we have JD2Γ ∈

M2. If ξ(0) ∈M2, then each of the columns of ξ(0) has the same form as in either Lemma 8.4 or

8.5. Hence, the solution to the system of linearized equations given by (3.3) satisfies ξ(s) ∈M2 for

all s. Since Y0 ∈M2, ξ(s) ∈M2 for all s. This gives B ∈M2, where B is as defined in Corollary

3.4. Then, B−1 ∈ M2 by the closure of inverses within M2. Hence D ∈ M2, and Λ ∈ M2 by

construction, with D defined following (8.9) and Λ as in (8.8). Since W = ΛD, we then have W

and W−1 are also in M2. Lastly, Equation (8.10) gives K ∈M as claimed.

Remark. (i) In terms of the 4DF Rhomboidal orbit, the structure of M2 very nicely decomposes

phase space into a direct sum of A = {Q2 = Q3 = P2 = P3 = 0} and A⊥ = {Q1 = Q4 = P1 =

P4 = 0}. This decomposition is due in part to the coordinate transformation we chose. The

choice of notation for A⊥ is appropriate in that A⊥ and A are orthogonal complements in

R8. The two are also skew-orthogonal: if a1 ∈ A and a2 ∈ A⊥, then aT
1 Ja2 = 0.

(ii) Matrices of the form M and M2 are similar to the diamond product discussed in [43]. Specif-
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ically, Σ−1MΣ = A13A2 for some matrices A1 and A2, where M ∈M2 and Σ is the matrix

Σ =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0



.

Furthermore, one of A1 or A2 corresponds to the 2DF setting.

(iii) The particular choice of Y0 given in (8.9) is important for this argument.

In light of Theorem 8.6, we need only to find eight of the entries of the matrix K. We can,

in fact, reduce this number further by using invariant properties of the orbit γ(s). As is well-

known, invariant quantities of the n-body problem are center of mass, net momentum, angular

momentum, and energy (the Hamiltonian itself). Each of these correspond to trivial eigenvalues of

the monodromy matrix. The center of mass and net momentum were “factored out” by our choice

of coordinates at the beginning. The remaining two invariant quantities will be used to reduce the

number of entries of K needed to find its eigenvalues.

Theorem 8.7. The matrix K has a right eigenvector [1,0,0,0]T , corresponding to eigenvalue −1.

Proof. Let v = Y−1
0 γ

′
(0)/||γ ′(0)|| or, equivalently, Y T

0 γ
′
(0)/||γ ′(0)||. By Corollary 3.4, since Y0

is orthogonal and S is symmetric, we have

W = Y−1
0 SY0B−1SB = Y−1

0 SY0B−1ST B = Y T
0 Y (T/2).

Since γ
′
(s) is a solution of ξ̇ = JD2Γ(γ(s))ξ and γ

′
(0) = Y (0)Y−1

0 γ
′
(0) = Y (0)v, we also know
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that γ
′
(s) = Y (s)Y−1

0 γ
′
(0) = Y (s)v. This implies

Y−1
0 γ

′
(T/2) = Y T

0 Y (T/2)v =Wv. (8.12)

By the symmetry γ(s) = −Sγ(T/2− s), we also have γ
′
(s) = Sγ

′
(T/2− s). Setting s = 0 in this

setting tells us that γ
′
(0) = Sγ

′
(T/2). Since

γ
′
(0) = (ω,0,0,0,0,0,0,0)

for some real number ω, we have −Sγ
′
(0) = γ

′
(0). Thus

Y−1
0 γ

′
(T/2) = Y T

0 Sγ
′
(0) =−Y T

0 γ
′
(0) =−v. (8.13)

Combining (8.12) and (8.13) gives Wv =−v, and so −1 is an eigenvalue of W with eigenvector v.

By definition, we have that

v = Y T
0 γ

′
(0)/||γ

′
(0)||= (0,0,0,0,1,0,0,0).

From the form of W , this implies that

K



1

0

0

0


=



−1

0

0

0


.

So [1,0,0,0]T is an eigenvector of K with eigenvalue−1. Consequently, the first column of K must

be [−1,0,0,0]T .
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Combining the results of the previous two theorems gives

K =



−1 0 0 ∗

0 a b 0

0 c d 0

0 0 0 e


. (8.14)

Remark. Owing to the decomposition of linearized phase space into two invariant subspaces and

the ordering of the coordinates, the position of e in the matrix K indicates that it should be an

eigenvalue corresponding to the behavior of the orbit in A . This eigenvalue, along with the trivial

eigenvalue −1 from the (1,1) position, completely classify linear stability in the 2DF setting.

Hence, computing the linear stability of the 4DF orbit in the chosen coordinates automatically

gives the stability of the 2DF orbit. (The results will be discussed further in Section 8.5.1.)

We can make use of the final invariant quantity, angular momentum, to further simplify our cal-

culations. This is an extension of Roberts’ method from [1], in which coordinate transformations

“factor out” the angular momentum before linearization is performed. In the following theorem,

we are able to show that this invariant quantity can be used to simplify linear stability calculations

after linearization.

Theorem 8.8. The matrix W has a left eigenvector ∇A(γ(0))Y0 with eigenvalue −1.

Proof. This proof is based on ideas given in [37], p. 134, Lemma 7. Define v̂(s) = ∇A(γ(s)),

where A represents the regularized angular momentum given in (8.4). Then

v̂ =
1
2
(P2,−P1,P4,−P3,−Q2,Q1,−Q4,Q3) .

Since

γ(0) = (0,0,0,ζ4,
√

8,0,0,0),

we know that

v̂(0) =
1
2

(
0,−
√

8,0,0,0,0,−ζ4,0
)
.

93



www.manaraa.com

Let φ(s,z) be the general solution to the system of regularized differential equations with initial

condition z. Then

A(φ(s,z)) = A(z).

Differentiating with respect to z gives

∇A(φ(s,z))
∂φ

∂z
(s,z) = ∇A(z)

or, equivalently

v̂(s)X(s) = v̂(0)

where X(s) is the fundamental matrix solution. Setting s = T/2 and substituting X(T/2) =

Y0(Y−1
0 Y (T/2))Y−1

0 gives

v̂(T/2)Y0(Y−1
0 Y (T/2))Y−1

0 = v̂(0)

and so

v̂(T/2)Y0(Y−1
0 Y (T/2)) = (v̂(T/2)Y0)W = v̂(0)Y0.

By the symmetry of the orbit, γ(T/2) =−γ(0), which gives

v̂(T/2) =−v̂(0),

and therefore

(v̂(0)Y0)W =−v̂(0)Y0.

Hence v̂(0)Y0 is a left eigenvector for W with eigenvalue −1.

We readily compute v̂(0)Y0 =
1
2(0,−ζ4,

√
8,0,0,0,0,0). From this, we know that

(0,−ζ4,
√

8,0)KT =−(0,−ζ4,
√

8,0).

Since K ∈M , this requires that the additional −1 eigenvalue comes from the central 2× 2 block
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in K. Furthermore, this imposes some relations on the entries a,b,c,d in (8.14). In particular,

b =
(a+1)ζ4√

8
,

c =
(d +1)

√
8

ζ4
.

Hence we have shown, through analytical techniques, that we only need to find three entries of the

matrix K, namely a, d, and e, in order to determine the linear stability of the orbit.

Remark. (i) Since K is real-valued, this result, along with other results about the form of K,

force all of the eigenvalues of K to be real.

(ii) This analysis is an improvement over work done in Chapter 7, in which the −1 eigenvalue

corresponding to angular momentum showed up numerically but could not be factored out a

priori. This improvement is due to the relative simplicity of the rhomboidal orbit.

8.5 RESULTS

8.5.1 Stability in Two Settings. As discussed in Section 8.2.2, in order to find the initial con-

ditions for the 4DF orbit, we need only to find the initial conditions for the 2DF orbit. We found

the initial conditions for m = 0.01,0.02, ...,0.99,1 by adapting our technique used in [28] to the

rhomboidal configuration. The details are discussed in Appendix A.

We numerically obtain the matrix W (hence K) by a numerical integration of the linearized

systems and the initial conditions computed in Appendix A. The values of a, d, and e in the matrix

K, as given in (8.14), are readily computed using (8.11). Knowing these, as well as the value of ζ4

from Appendix A, we are able to determine the eigenvalues of K. The results are represented in

Figures 8.2 and 8.3.

Following these calculations, we obtain the following:

Theorem 8.9. The 4DF rhomboidal symmetric-mass orbit is linearly unstable for all m except for

a small interval about m = 0.4.
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Figure 8.2: A plot of the nontrivial eigenvalue of the central 2×2 submatrix of K as a function of
m. This eigenvalue crosses the horizontal axis for some value of m≈ 0.4.

Figure 8.3: A plot of the nontrivial eigenvalues of K as functions of m. The thicker line represents
the (4,4) entry of K. The thinner line is the same curve as plotted in Figure 8.2 with the value at
m = 0.4 emphasized.

We also note that there are five values of m for which we establish only spectral stability, due to

repeated eigenvalues on the unit circle. For simplicity of explanation, let f (m) denote the thicker

of the two curves in Figure 8.3, and g(m) the other. Roberts’ argument (see [1]) demonstrates that

each of the computed eigenvalues of K in [−1,1] correspond to the real part of a square root of an

eigenvalue on the complex unit circle. Accordingly, the value of m = m1 where f (m1) = g(m1)

is a point with duplicated eigenvalues, hence the corresponding orbit has only spectral stability.

Similarly, for m2 and m3 satisfying g(m2) =−1 and g(m3) = 1 give a pair of (±1)2 eigenvalues of

W 2. For m4 with g(m4) = 0, we get (±i)2 = −1 eigenvalues of W 2. Finally, there is a fifth value

when cos(2 f (m5)) = cos(2g(m5)), which arises by equating the real parts of (eiπθ1)2 = (eiπθ2)2

when θ1 6= θ2.
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In order to obtain a more precise interval of mass values for which the orbit is linearly stable

(excluding the above-mentioned mi), the initial conditions for mass values m = 0.39, 0.391, ...,

0.409, 0.41 were obtained using the same trigonometric polynomial approximation/optimization

as used in Appendix A. The same linear stability calculations demonstrate that the 4DF rhomboidal

orbit is linearly stable for m contained in some subinterval of (0.395,0.401). In other words, the

orbit was found to be linearly unstable for m = 0.395 and m = 0.401, but linearly stable for all

computed values in between, with the exclusion of the three critical mass values m1, m4, and m5.

In [44], Bounemoura shows that in an n-dimensional Hamiltonian system, orbits beginning

close to a linearly stable invariant torus generically remain “close” to the invariant torus for a

super-exponential amount of time, eventually drifting away. The theory can also be applied to

other cases, such as elliptic fixed points of maps. This analysis leads us to believe that, even

though we have linear stability for some open interval containing m = 0.4, the orbit is likely to be

unstable. Numerical perturbations off of A give evidence that this is the case.

We recall again that if we restrict to A , then the eigenvalue of K given by the (4,4) entry

corresponds to linear stability of the 2DF orbit. This value stays in the interval [−1,1] for m =

.02, .03, ..., .99,1. Hence,

Corollary 8.10. The 2DF rhomboidal symmetric-mass orbit is linearly stable for all m in the

interval (.01+ ε,1] for some ε > 0.

8.5.2 Poincaré Section Analysis in the 2DF Orbit. To numerically analyze nonlinear stability

in the 2DF setting, we find a suitable Poincaré section for the orbit. This was done in the m = 1

case in [34]. Our more general Poincaré section is based on techniques presented in [14] and [15].

For any value of m, we seek a number α such that

x1

x4
= α

is maintained throughout the orbit, with x1 and x4 as defined in (8.1) earlier, and fixing x2 = x3 = 0.

In other words, the value of α corresponds to the ratio of x1 and x4 in a homographic orbit where
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the trajectories of the bodies correspond to total collapse (or ejection from total collapse). This

is also a central configuration of the rhomboidal four-body problem. We find this value of α by

solving the standard equations of motion (1.1) with the substitutions x1 = αx4 and ẍ1 = αẍ4. Doing

so, we find that the required value of α for a given mass m is a root of the 12th-degree polynomial

(1+α
2)3(mα

3−1)2−64α
6(1−m)2 = 0. (8.15)

A similar polynomial (in terms of the angle between the vertical mass, the horizontal mass, and the

origin) is given by Waldvogel in [34]. Notice that if the ratio x1/x4 is constant throughout the orbit,

then the ratio x4/x1 is also constant throughout. It can be verified by numerical integration that the

roots of (8.15) corresponding to the ratio x1/x4 lie in the interval [0,1]. This will be preferred for

ease of numerical calculation. The value of α as a function of m is plotted in Figure 8.4.

Figure 8.4: The value of α as a function of m.

For fixed E = −1, we define a Poincaré section Σ to be the two-dimensional surface given by

x1 = αx4 in the phase space defined by the variables x1, x4, ẋ1, and ẋ4. (Note that ẋ1 and ẋ4 are

simply linear re-scalings of w1 and w4.) Restricting to E = −1, we find a bound on the possible

values of x1. Specifically, if ẋ1 = ẋ4 = 0 on Σ, the condition E =−1 requires that

x1 =
1
2
+

m2α

2
+

4m√
1+ 1

α2

= rmax.
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For a set of initial conditions on Σ, the requirement E =−1 necessarily implies that x1 ≤ rmax, and

if either of ẋ1 or ẋ4 are non-zero, then the strict inequality x1 < rmax holds.

We define coordinates (r,θ) on Σ by

r =
x1

rmax
, θ = tan−1

(
ẋ1

αẋ4

)
.

Under this change of coordinates, the homographic orbit corresponds to the line θ = π/4. For

a 9× 15 grid of equally spaced initial conditions in (r,θ) we numerically integrate the system

for the corresponding initial conditions and record the first 200 intersections of the orbit with Σ.

(Integration was preemptively terminated if any of Qi,Pi exceeded 1000 in absolute value.) The

results of this are shown in Figures 8.5 - 8.9. The observed concentric rings numerically match

the predicted result of Moser’s Invariant Curve Theorem in [5], and show that the rhomboidal

symmetric-mass orbit is nonlinearly stable for m = .02, .03, ..., .99,1.
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Figure 8.5: Poincaré sections plotted for m = .1 (top) and m = .2 (bottom). In these plots, r lies on
the vertical axis. The homographic orbit at θ = π/4 is not plotted for clarity.
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Figure 8.6: Poincaré sections plotted for m = .3 (top) and m = .4 (bottom).
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Figure 8.7: Poincaré sections plotted for m = .5 (top) and m = .6 (bottom).
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Figure 8.8: Poincaré sections plotted for m = .7 (top) and m = .8 (bottom).
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Figure 8.9: Poincaré sections plotted for m = .9 (top) and m = 1 (bottom).
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CHAPTER 9. SEPARATING SURFACES IN GENERALIZED SITNIKOV

PROBLEMS

9.1 INTRODUCTION

In 1960, Sitnikov [45] demonstrated the existence of a restricted three-body orbit which exhibits

a remarkable chaotic behavior. This orbit consists of a periodic Kepler two-body orbit in the xy-

plane with equal masses and a third, massless particle that runs along the z-axis, simultaneously

remaining not bounded and not tending to infinity (oscillatory motion). The behavior is eventually

extended to the case where the z-axis body has small finite mass. This orbit, and variations of it,

have been the subject of much study since that time.

Analytic solutions of this orbit date back to before Sitnikov’s time. In 1913, MacMillan [46]

gave the explicit solution in the case where the Kepler orbit is circular in terms of elliptic functions.

Finding analytic and numerical methods for computing solutions away from the circular case is still

an active area of research (see [47], [48], and [49], for example). Additionally, numerical studies

of the non-circular case have given some ideas of qualitative behavior of the orbit, including the

nature of bifurcations as the eccentricity parameter varies. (See [50]).

In 2008 (with further work in 2010) the existence of an infinite family of non-trivial periodic

orbits of the Sitnikov problem was demonstrated by Llibre and Ortega in [51] and Ortega and

Rivera in [52]. It is demonstrated that there are orbits where p crossings of the massless particle

through the origin occur for every N periods of the planar orbit, for any natural numbers p and N.

Moreover, it is shown that these periodic orbits exist for any eccentricity in [0,1) for the planar

masses. Similar work was done independently by Marchesin and Castihlo in [53]. Existence

results were extended to a generalized Sitnikov problem, which involves more than two masses in

a planar configuration whose orbits are ellispses, by Rivera in 2013 (see [54]). Interestingly, the

results of Rivera’s work included an upper bound of 234 masses in the planar configuration needed

for the results to hold.

Marchesin and Vidal consider a further departure from the general Sitnikov setting in [55]. In
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their 2013 paper, they consider a rotating central configuration of four masses in two equal-mass

pairs which geometrically form a rhombus. Under a certain transformation of coordinates, the

masses become fixed points, as in the classical study of the restricted three-body problem. They

are able to then derive many of the classical results known for the circular Sitnikov problem, in-

cluding the non-existence of non-periodic oscillating motion. Additionally, they perform a stability

analysis of the so-called “horizontal motion”, wherein the massless particle is allowed to drift off

of the z-axis. This is similar to the numerical stability analysis performed by Sidorenko in [56] for

the circular Sitnikov problem.

Some other works, which we will not summarize here, but which lend further evidence to the

volume of study given in this topic, include works by Alekseev ([57], [58], [59]), Moser ([60]), Liu

and Sun ([61]), Perdios ([62]), Perdios and Markellos ([63]), and Soulis, Papadakis, and Bountis

([64]).

The work presented in this chapter originally arose out of a study of the rhomboidal four-body

problem, in which two bodies of mass m1 lie at (±x,0) for all time, and another pair of mass m2 lie

at (0,±y). The periodic version of these orbits feature alternating horizontal and vertical collisions

at the origin. Some relevant recent papers on this orbit include [34], [24], and [31]. Additionally,

[25] and [13] include the rhomboidal four-body orbit as part of a larger class of periodic collision-

based orbits. The m2→ 0 limiting case of this orbit is equivalent to the eccentricity-one version

of the Sitnikov problem, featuring binary collision of the two non-zero masses at the origin. Since

the zero-mass particles are symmetric for all time and exert no gravitational pull on each other, one

may be ignored, giving the familiar Sitnikov setting. The results derived from research in this area

readily generalized to the setting presented in this chapter.

The main portion of the chapter will be devoted to the proof of the following theorem:

Theorem 9.1. There exists a four-branched, two-dimensional topological manifold S that sepa-

rates Sitnikov-like n+ 1-body escape orbits from non-escape orbits. Moreover, each branch of S

is either forward- or backward-invariant.

The remainder of the chapter will be as follows: In Section 9.2, we establish the notation
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that will be used throughout the chapter, as well as give the differential equations pertaining to

the orbits which we are considering. Section 9.3 contains a theorem from topology that is a key

ingredient to the proof of the Main Theorem. Section 9.4 contains the proof of the Main Theorem,

broken into three parts. In Section 9.4.1, we build up some helpful results for the proof. Section

9.4.2 constitutes the bulk of the proof, and contains the majority of the construction of S . Lastly,

Section 9.4.3 completes the construction and gives some observations about S . Section 9.5 focuses

on numerical results pertaining to the Main Theorem. Section 9.5.1 gives a few more calculations

that can be used to accelerate the pace of the numerical work. Sections 9.5.2 through 9.5.4 then

give the results for various planar configurations. Lastly, Section 9.6 lists some open questions and

gives some concluding remarks.

The results presented in this chapter were originally published as [65].

9.2 NOTATION

Consider any T -periodic planar configuration of n bodies whose coordinates are given by (x1,y1),

..., (xn,yn), and whose masses are given by m1, ..., mn. We will require that the configuration

maintains a rotational symmetry throughout in the following sense: there is a fixed angle α which

evenly divides 2π such that rotation of the plane through the angle α at any time yields the same

physical setting (up to re-labeling of the bodies). For our purposes, no further restrictions need

be placed on the planar bodies. In fact, no difficulty arises if planar orbits featuring regularized

collisions are considered. Under the rotational symmetry condition, the acceleration of a massless

particle on the z-axis will be in a direction parallel to the z-axis. Moreover, if the initial velocity of

the particle on the z axis is also parallel to the z-axis, then the particle will remain on the z-axis for

all time.

As the particular configuration of the planar masses will not be of much importance, we sim-

plify notation slightly by setting

ri =
√

x2
i + y2

i
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and consider only the distances from the origin of the bodies in the plane. Setting q to be the

position of the massless particle on the z-axis with p its velocity, we have the following equations

of motion:

q̇ = p, (9.1)

ṗ =−
n

∑
i=1

miq
(r2

i (t)+q2)3/2 , (9.2)

where the dot represents the derivative with respect to time. It is important to remember that each

of the ri is time-dependent and T -periodic. At many points in our analysis, it will help to consider

the time-independent system:

q̇ = p, (9.3)

ṗ =−
n

∑
i=1

miq(
r2

i (θ)+q2
)3/2 , (9.4)

θ̇ = 1 (9.5)

and consider the behavior on R×R× [0,T ] with the θ = 0 and θ = T planes identified. The

flow given by equations 9.3 - 9.5 will be denoted φt , and points in this space will be given by

ordered triples (p,q,θ). Note that changing the sign on both q and p also changes the sign of q̇

and ṗ. Hence, understanding only half of the phase space is necessary to categorize the complete

behavior of φt . For simplicity, we will consider the q > 0 region.

As the behavior near q = ∞ will be especially important for our analysis, we also define new

variables Q and P by

Q = q−1/2,

P = p.
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Note that under this change of variables, Q = 0 corresponds to q = ∞. In this setting, we have

Q̇ =−1
2

Q3P, (9.6)

Ṗ =−
n

∑
i=1

miQ4(
r2

i (θ)Q4 +1
)3/2 , (9.7)

θ̇ = 1. (9.8)

We will use Φt to denote the flow on [0,∞)×R× [0,T ] as defined by 9.6 - 9.8, where the θ = 0 and

θ = T planes are again identified. Points in this coordinate setting will again be given by ordered

triples (Q,P,θ).

Note that any point (Q,P,θ) with Q = 0 has a T -periodic orbit under Φt . These orbits corre-

spond to orbits where the massless particle has escaped to infinity, de-coupling the system. Phys-

ically, the value of P is the velocity with which escape has occurred. In this setting, the new

one-body system is not acted on by external force, and continues moving at its initial velocity in

accordance with Newton’s first law, while the planar configuration continues its periodic motion

forever. If escape occurs with positive velocity, it is said to be hyperbolic. If escape occurs with

zero velocity, it is said to be parabolic.

9.3 A HELPFUL THEOREM

One tool that will be needed in our proof of the Main Theorem, but which is not directly related

to the dynamics of the system, is presented below. It may be thought of as a topological version

of the Closed Graph Theorem. However, to avoid confusion, we will refrain from referring to it as

such. (This is presented as a problem in [66], p. 171.)

Theorem 9.2. Let f : X → Y , where Y is a compact Hausdorff space. Then f is continuous if and

only if the graph Γ f of f , defined as

Γ f = {(x, f (x)) : x ∈ X}
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is closed in X×Y .

We provide a proof for completeness.

Proof. Suppose that f is continuous, and let {xn} → x in X . Then f (xn) converges to f (x), and

so the sequence of points (xn, f (xn)) converges to (x, f (x)). Since any sequence of points in Γ f

corresponds (via projection) to a sequence of points in xn, we get that Γ f is closed.

On the other hand, suppose that Γ f is closed. Let V be any open neighborhood of f (x0) in Y ,

and let V c = Y −V . Then X ×V c is closed, so Γ f ∩ (X ×V c) is closed. Since Y is compact, pro-

jecting the set Γ f ∩ (X×V c) to X gives a closed set whose points correspond to the points mapped

outside V by the function f . The complement of this set is therefore the open neighborhood re-

quired by the definition of continuity.

9.4 PROOF OF THE MAIN THEOREM

9.4.1 Constructive Lemmas. In this section, we develop some results that will help to build

up the surface described in the Main Theorem. We begin by making a number of important obser-

vations about the flow φt . The first is an observation from calculus.

Lemma 9.3. There exists a positive number qmono such that ṗ is negative and monotonically in-

creasing as a function of q for all q > qmono and for all θ.

Proof. Recall that ṗ is a sum of functions of the form

hi(q) =−
miq(

r2
i (θ)+q2

)3/2 .

For a fixed value of θ with r2
i (θ) > 0, the function hi(q) has the shape shown in Figure 9.1. (The

ri(θ) = 0 case becomes the asymptotic curve ṗ = q−3.)

Using basic calculus, we find the single critical point of hi with q > 0 by evaluating ∂ ṗ/∂q.

This value occurs when q2 = r2
i /2, or when q = ri/

√
2. (Note that this still holds true for ri = 0.)

Since each ri is continuous and periodic, each achieves a maximum value Ri over its period. So the
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Figure 9.1: Typical shape of hi(q).

maximum value of q for which the above function can have its critical point is Ri/
√

2. So hi(q) is

increasing for all q > Ri/
√

2 regardless of the value of θ. Setting qmono to be the maximum of the

values Ri/
√

2, then each hi(q) is increasing for q > qmono for any θ. Since ṗ is simply the sum of

all the hi, ṗ is increasing in q for all q > qmono.

Let φ
q
t (q0, p0,θ0) represent the value of the q variable under the flow φt with the prescribed

initial conditions, and define φ
p
t and φθ

t similarly. It is worth noting that

φ
θ
t (q0, p0,θ0) = θ0 + t

for any initial conditions.

Lemma 9.4. With qmono as defined in Lemma 9.3, let q1, q2, p1, and p2 be positive numbers with

qmono ≤ q1 ≤ q2 and p1 ≤ p2, and let θ0 ∈ [0,T ] be arbitrary. Let tfinal be the (possibly infinite)

maximum value of t for which both φ
p
t (q1, p1,θ0) and φ

p
t (q2, p2,θ0) are non-negative. Then, for

t ∈ (0, tfinal) we have that both φ
q
t (q1, p1,θ0)≤ φ

q
t (q2, p2,θ0) and φ

p
t (q1, p1,θ0)≤ φ

p
t (q2, p2,θ0).

Proof. Define q= φ
q
t (q2, p2,θ0)−φ

q
t (q1, p1,θ0) and p= φ

p
t (q2, p2,θ0)−φ

p
t (q1, p1,θ0). Then, by

assumption, both q≥ 0 and p≥ 0. It suffices to show that the set

{(q,p) : q≥ 0,p≥ 0}
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is forward-invariant. We will do this by showing that the boundary of the region maps to the

interior under the flow φt . Note that, by construction, q̇= p. If q= 0 and p> 0, then q̇> 0. On the

other hand, if p = 0 and q > 0, then φ
q
t (q2, p2,θ0) > φ

q
t (q1, p1,θ0). This implies that ṗ > 0 when

p= 0 by Lemma 9.3. Lastly, if both q= p= 0, then q1 = q2 and p1 = p2, so q= p= 0 for all time

by uniqueness of solution. Hence, the indicated set is forward-invariant.

In a physical sense, Lemma 9.4 may be translated as the following: Consider the effect of

placing two massless particles on the positive z-axis with some upward velocity. If their initial

conditions are not identical and satisfy the conditions of Lemma 9.4, then:

• If both start at the same position, then the particle initially moving faster will be both moving

faster and located farther away from the origin as long as both continue to move away from

the origin.

• If both start with the same velocity, then the particle initially farther away from the origin

will be both located farther away from the origin and moving faster as long as both continue

to move away from the origin.

• If initial positions are not equal, and the particle farther from the origin also has greater

velocity, then the particle farther from the origin will be both moving faster and be located

farther away from the origin as long as both continue to move away from the origin.

Next, we give some analysis of some important behaviors of Φt . For this, we define functions

Φ
Q
t and ΦP

t in an analogous fashion to φ
q
t and φ

p
t .

Lemma 9.5. Let M = m1 + · · ·+mn. Then, the set of all points (Q,P,θ) for which P ≥
√

2MQ is

forward-invariant.

Two proofs of this Lemma will be given in this chapter. The first, presented here, is geometric

in nature. A second, more analytic proof is presented as the proof of Theorem 9.12.

Proof. Let (Q,P,θ) be any point with P ≥
√

2MQ. Using equations 9.6 - 9.8 and projecting onto

the QP-plane, we may think of this region as the area above a line. (See Figure 9.2.)
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Now, note that

|Ṗ|=
n

∑
i=1

miQ4(
r2

i (θ)Q4 +1
)3/2

≤
n

∑
i=1

miQ4

= MQ4

=

(√
M
2

Q3

)(√
2MQ

)
≤
√

M
2

Q3P.

Then, we have that

∣∣∣∣ ∂P
∂Q

∣∣∣∣= ∣∣∣∣ ṖQ̇
∣∣∣∣

≤

√
M
2 Q3P

1
2Q3P

= 2

√
M
2

=
√

2M.

Geometrically, ∂P/∂Q represents the slope of a line in the P,Q plane. In our particular setting,

this represents the directions that a trajectory of Φ
Q
t and ΦP

t can take as t increases. Since both

Φ
Q
t and ΦP

t are decreasing, such trajectories must be decreasing in both variables. Moreover, since

the maximum slope that such a trajectory can have is
√

2M and the line Q = 0 consists entirely of

equilibria, it is impossible for a trajectory that begins in the P ≥
√

2MQ region to escape it, as it

cannot approach P =
√

2MQ.

9.4.2 The Core Construction. For this section, let q0 > qmono be fixed, where qmono is defined

as in Lemma 9.3, and let Q0 = q−1/2
0 be the corresponding value in the inverted coordinate frame.
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Figure 9.2: The “fan” of possible directions of a trajectory of Q and P at a given point.

The key step in the construction will be the following:

Theorem 9.6. There exists a continuous function f (θ) : [0,T ]→ R such that

Φ
P
t (Q0, f (θ),θ)→ 0 as t→ ∞.

The remainder of this section will be the proof of this theorem. The function f will arise from

the level set of another function g, which has to be defined in a piecewise fashion. Figure 9.3 will

help to keep much of the notation straight.

Figure 9.3: Simplified diagram for much of the notation in Section 9.4.2. The θ variable has been
removed for ease of reading, but trajectories should be considered as taking place in (Q,P,θ) space.

To begin with, define the sets

Preturn = {(Q0,P,θ) : P≥ 0, θ ∈ [0,T ], Φ
P
t (Q0,P,θ)< 0 for some finite t ≥ 0}
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and

Pescape = {(Q0,P,θ) : P≥ 0, θ ∈ [0,T ], lim
t→∞

Φ
P
t (Q0,P,θ))> 0}.

Physically, the set Preturn corresponds to initial conditions that cause the massless particle to

return to the origin, as the velocity P eventually becomes negative. On the other hand, Pescape

corresponds to initial conditions that lead to the massless particle to escape to infinity with positive

velocity (or hyperbolic escape). Certainly both sets are non-empty, as (Q0,0,θ) ∈ Preturn for any

θ ∈ [0,T ], and Pescape contains points for which Lemma 9.5 applies. Also, if 0≤ P1 < P2, then by

Lemma 9.4:

• If (Q0,P1,θ) ∈ Pescape, then (Q0,P2,θ) ∈ Pescape, and

• If (Q0,P2,θ) ∈ Preturn, then (Q0,P1,θ) ∈ Preturn.

As the first step in building g, for all elements of Preturn, define

τ(Q0,P,θ) = max{t ≥ 0 : Φ
P
t (Q0,P,θ)≥ 0},

and define g∗ : Preturn→ R by

g∗(Q0,P,θ) = Φ
Q
τ(Q0,P,θ)

(Q0,P,θ).

In other words, g∗ gives the position (in the inverted coordinate frame) at which the massless

particle achieves its maximum before returning to the origin. Since τ is continuous by continuity

with respect to initial conditions, then g∗ is also continuous by composition.

By construction, the function g∗ can take values only in the range (0,Q0]. Moreover, by consid-

ering the backwards-time flow Φ−t(Q,0,θ) over the set of points where Q ∈ (0,Q0] and θ ∈ [0,T ],

it is apparent that g∗ is onto. Since Preturn is the pre-image of the relatively open set set (0,Q0], then

Preturn is relatively open in the Q = Q0,P≥ 0 plane. In fact, g−1
∗ ((0,Q0)) is precisely g−1

∗ ((0,Q0])

with the line Q = Q0, P = 0 removed, and has two boundary curves – the aforementioned Q = Q0,

P = 0 line, and an upper (P > 0) yet-undetermined boundary.
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We wish to extend this to a continuous function on Preturn, where Preturn denotes the closure of

Preturn. For any sequence of points in Preturn that approach the open P > 0 boundary of Preturn, the

sequence must eventually lie outside of g−1
∗ ((ε,Q0]) for any ε > 0. Hence, defining g∗ to be zero

on the open boundary of Preturn is a continuous extension of g∗ to Preturn.

We define a similar function g∗ : Pescape→ R by

g∗(Q0,P,θ) = lim
t→∞

Φ
P
t (Q0,P,θ).

Physically, this function describes the velocity with which the massless particle escapes to infinity.

By uniqueness of solutions to ODEs, this function is well-defined.

Lemma 9.7. The function g∗ as just defined is continuous and onto (0,∞).

Proof. Recall from the proof of Lemma 9.5 that there is a limited interval of directions (thought

of as slopes of lines) that trajectories in the (Q,P) plane can take under Φt . Using this, construct

a truncated open “cone” C in the (Q,P) plane as pictured in Figure 9.4. Then, for any point

(Q,P,θ) with (Q,P) ∈ C , we know that Φt(Q,P,θ) ∈ C × [0,T ] for all t > 0. Let U be the union

of all Φ−t(C × [0,T ]) for t ≥ 0. Then the set of all points in U with first coordinate Q0 forms the

relatively open set in Pescape required for the definition of continuity.

Figure 9.4: Construction of the truncated “cone” C .

To show that g∗ is onto, let L be any positive real number. Construct two non-intersecting

“cones” C1 and C2 as in Figure 9.4, with a sufficiently small ε so that neither borders the point

(0,L), and so that C1 lies below the line P = L and C2 lies above the line P = L. (See Figure 9.5.)
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Then the pre-image of both Ci× [0,T ] under Φt intersecting Pescape contain two points which map

to values of g∗ which are above and below L. By continuity of g∗, there must then be a point at

which g∗ = L.

Figure 9.5: The function g∗ is onto.

Similar to before, we now note that Pescape is open, as it is the continuous pre-image of the set

(0,∞). We extend g∗ to Pescape by defining g∗ to be zero on the boundary points. Such an extension

is continuous. Finally, let P = Preturn∪Pescape, and define g : P → R by

g(Q0,P,θ) =

 g∗(Q0,P,θ) : (Q0,P,θ) ∈ Pescape

−g∗(Q0,P,θ) : (Q0,P,θ) ∈ Preturn

It now remains to show that P is the set of all points with Q = Q0 and P≥ 0.

Lemma 9.8. For Q = Q0 and a given θ0, there is a single value of P satisfying g(Q0,P,θ0) = 0.

Proof. Suppose there are two values P1 and P2 with P1 < P2 so that

Φ
P
t (Q0,Pi,θ0)→ 0 as t→ ∞

for i = 1, 2. Then, by Lemma 9.4 and the fact that both are assumed to escape to infinity, we must

have P1 < P2 for all t > 0. Furthermore, by the proof of Lemma 9.4, the difference P2−P1 must
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be increasing for all t. Thus, it is impossible for

lim
t→∞

Φ
P
t (Q0,P1,θ0) = 0 = lim

t→∞
Φ

P
t (Q0,P2,θ0)

for P1 6= P2.

As a consequence, the upper boundary of Preturn and the boundary of Pescape must be the same,

as it is impossible for them to have an interval of any positive length separating them for any

fixed value of θ. We can now define f (θ) to be the unique value such that g(Q0, f (θ),θ) = 0. By

construction of g, this gives the property

Φ
P
t (Q0, f (θ),θ)→ 0 as t→ ∞

automatically. Since both of g∗ and g∗ are continuous in their respective domains, and they both

take the value of 0 on their shared boundary, the new function g is continuous.

Lemma 9.9. The function f is well-defined and continuous.

Proof. We know f is well-defined by Lemma 9.8. Note that the set of all points (Q0, f (θ),θ) is

closed, as it is precisely the set g−1(0). Then, by Theorem 9.2, we have that f is continuous, as the

range of f is the compact interval [0,
√

2MQ0].

9.4.3 The Final Parts. Here, we complete the proof of the Main Theorem and give some prop-

erties of the resulting surface S . Let G be the set of all points (Q0, f (θ),θ), with Q0 as defined in

the previous section. Then the image of G under Φt for t ∈ R gives a topological 2-manifold S

which is Φt-invariant and lies in the q > 0, p > 0 portion of phase space. Since changing the signs

of q and p changes the sign of q̇ and ṗ in 9.1 and 9.2, the surface S is mirrored in the q < 0, p < 0

region “for free”. Using the same coordinate changes for Q and P and running time backwards,

we can construct an analogous surface S in the q > 0, p < 0 region and use symmetry to get the

remaining two portions.
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Theorem 9.10. If ri(t) 6= 0 for all i and for all t, then the p-coordinates of all points in S are

bounded. In other words, S lies between the two planes p =±B for some 0 < B < ∞.

Proof. Without loss of generality, consider the portion of S lying in the region q > 0, p > 0. (The

q> 0, p< 0 region follows by reversing time. The q< 0 region then follows from symmetry.) Note

that for any point x = (q0, px,θx) in the set G described at the beginning of the section, forward

images of x under φt will have decreasing values of p. Hence, only the backwards-time image of x

need be considered to find a bound. In that case, the value of φ
p
−t(q0, px,θx) is increasing in t, but

this rate of increase is bounded above by

n

∑
i=1

miq0√
ε+q2

=
Mq0√
ε+q2

,

where ε > 0 is the minimum value of all the ri on [0,T ]. Furthermore, since px > 0, it must reach

the q = 0 plane before t = q0/px. Hence, the value of φ
p
−t(q0, px,θx) must be finite at the time

the trajectory intersects the q = 0 plane, as it has a bounded rate of increase over a bounded time.

Since mapping G to the q = 0 plane by φ−t is continuous, the values of p on the intersection of S

and {q = 0} must be bounded.

It is important to note that the q > 0 and q < 0 branches of S need not match up across the

q = 0 plane. However, we can guarantee the existence of a few points where the two will match if

the planar orbit satisfies certain symmetry properties.

Theorem 9.11. Let t0 be a real number for which all ri(t) satisfy ri(t0− t) = ri(t0 + t). Then there

exists an orbit that escapes to infinity parabolically in both forward and reverse time which passes

through the q = 0 plane when θ = t0 mod T .

Proof. Let (0, p0,θ0) be a point with θ0 = t0 mod T such that φt(0, p0,θ0)∈ S some for t > 0. Then

φt(0, p0,θ0) ∈ S for all t > 0 by flow-invariance of S . Since ri(t0− t) = ri(t0 + t), we then have

φ
q
−t(0, p0,θ0) =−φ

q
t (0, p0,θ0) and φ

p
−t(0, p0,θ0) =−φ

p
t (0, p0,θ0). Since limt→∞ φ

q
t (0, p0,θ0) = ∞

and limt→∞ φ
p
t (0, p0,θ0) = 0 by construction, then we must have limt→∞ φ

q
−t(0, p0,θ0) = −∞ and

limt→∞ φ
p
−t(0, p0,θ0) = 0.
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In the case of the circular Sitnikov problem, such a time-reversing symmetry for the functions

ri exists for all t0, and so the two branches of S will match exactly over q = 0. This is not too

surprising, as this problem is completely integrable. For configurations with up to finitely many

symmetries, the regions on which the two branches of S fail to line up on q= 0 give the “windows”

through which any orbit passing from return to escape must pass. These will be the subject of the

numerical investigations in the following section.

9.5 NUMERICAL INVESTIGATIONS

9.5.1 A Numerical Catalyst. Before presenting any particular numerical worked examples, we

present some theory that makes our numerical work simpler. Since 0≤ ri ≤ Ri for all applicable i,

then for q > 0, we have

q3 ≤ (r2
i +q2)3/2 ≤ (R2

i +q2)3/2.

Let R be the maximum of {R1,R2, ...,Rn}. Then

q3 ≤ (r2
i +q2)3/2 ≤ (R2

i +q2)3/2.

Taking the reciprocal and multiplying by miq gives

mi

q2 ≥
miq

(r2
i +q2)3/2 ≥

miq
(R2 +q2)3/2 .

Assuming further that p > 0, we then have that

−mi p
q2 ≤ −miqp

(r2
i +q2)3/2 ≤

−miqp
(R2 +q2)3/2 .

Since this holds for arbitrary i, it holds in the summation. We then have

−Mp
q2 ≤

n

∑
i=1

−miqp
(r2

i +q2)3/2 ≤
−Mqp

(R2 +q2)3/2 .

120



www.manaraa.com

The central quantity here is simply pṗ. All of these expressions can be integrated explicitly with

respect to t. Integrating over the interval [ta, tb] gives

M
q(tb)

− M
q(ta)

≤ 1
2

p2(tb)−
1
2

p2(ta)≤
M√

R2 +q2(tb)
− M√

R2 +q2(ta)
. (9.9)

Theorem 9.12. If q > 0, p > 0, and

E∗ =
1
2

p2(ta)−
M

q(ta)
> 0

at some time ta, then q(t)→ ∞ as t→ ∞.

Proof. Re-arranging the right inequality in 9.9 gives

1
2
(p(tb))

2 ≥ M
q(tb)

+E∗.

Hence, p is bounded below for all time [ta, tb]. As tb was arbitrary and E∗ only depends upon

conditions at ta, we have that p is bounded below for all time. Furthermore, p is bounded below

uniformly by the value of E∗. Hence, q is increasing with its derivative bounded away from zero,

so we must have q→ ∞ as t→ ∞.

It is worth noting that in the inverted coordinates, the conditions of Theorem 9.12 become

precisely those of Lemma 9.5. The geometric proof presented following Lemma 9.5 was useful

for many of the details in Section 9.4. On the other hand, the proof of Theorem 9.12 can be more

readily interpreted in terms of positions and velocities, giving a better physical intuition.

On the other hand, we also have

Theorem 9.13. If q > 0, p > 0, and

E∗ =
1
2

p2(ta)−
M√

R2 +q2(ta)
< 0

at some time ta, then there is some future time tb where p(tb) = 0 and q(tb)< ∞.

121



www.manaraa.com

Proof. Rearranging the left inequality in 9.9, we have

1
2

p2(ta)≤
M√

R2 +q2(tb)
+E∗.

Since the term on the left must be positive, the term on the right must be as well. This gives

−E∗ ≤
M√

R2 +q2(tb)
.

(Note that both sides here are positive.) Rearranging the equation then gives

q2(tb)≤
(

M
E∗

)2

−R2.

Since both numbers on the right are finite, we must have that q2 is bounded, and so q is bounded

as long as q and p are both positive. Then q̈ is negative and bounded away from zero on that same

time interval, and so it must be the case that q̇ = p = 0 at some future time tb.

It is worth noting that if the inverted coordinates are used, the set E∗ = 0 becomes the equation

P =

√
2MQ

4
√

R2Q4 +1
.

As Q→ 0+, the derivative dP/dQ approaches
√

2M, which is the same as the boundary of the

forward-invariant region given in Lemma 9.5. Since the invariant surface S must lie between the

two, we can describe the linearized behavior of S near Q = 0–namely, S is locally approximated

by P=
√

2MQ, independent of θ. Hence, we have a first-order approximation for a stable manifold

of a degenerate fixed point (in the two-variable time-dependent system), similar to the work done

by McGehee in [67].

Theorems 9.12 and 9.13 give readily verifiable conditions on q and p that determine whether

the massless particle escapes to infinity or has a future point at which it again passes through the

origin. The set of points in (q, p,θ) that satisfy these inequalities are not complements of each
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other in R3, and the separating surface S must lie between them. It is also worth noting that these

sets of points are merely forward-invariant under φt – there are points lying outside of these sets

that eventually enter them under φt . This is helpful numerically, as we can obtain estimates of the

intersection of S with the plane q = q0 ≥ qmono, and hence find the value of f (θ), by fixing a value

of θ and integrating initial conditions for various estimated values of p. Depending on which region

they enter, we can adjust our guess upward or downward in a standard fashion (for instance, using

the bisection method). This is very readily accomplished numerically in the inverted coordinate

frame, as the intervals in which Q, P, and θ lie are all of finite length. Lastly, as described in

Section 9.4.3, we can integrate to find the intersection of the image of this curve under φ−t with

the plane q = 0. These images can reveal some other interesting possible behaviors of the orbit of

the massless particle.

9.5.2 A Non-circular Kepler Configuration. As a first example, we consider the classical

Sitnikov problem with a non-circular Kepler orbit in the plane. Two bodies of mass 1 are initially

placed at (±1,0) with initial velocity (0,±1). This results in the intersecting ellipses shown in

Figure 9.6.

Figure 9.6: The planar two-body problem for Section 9.5.2 in the (x,y) plane.

This orbit has period T ≈ 2.4183. The functions r1(t) and r2(t) satisfy r1(t) = r2(t) for all t.
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Further, with the initial conditions at the maximum distance from the origin, we have r1(T − t) =

r1(t). A similar symmetry r1(T/2+ t) = r1(T/2− t) exists at the point where the two bodies reach

their minimum distance from the origin.

As R1 = R2 = 1 for this orbit, we choose the value of q0 = Q0 = 1 for convenience. Using the

procedure described in Section 9.5.1 and the standard Runge-Kutta integration, we find the value

of P = f (θ) for an evenly-spaced grid of points in the interval θ ∈ [0,T ]. The results of integrating

these points back to the q = 0 plane are shown in Figure 9.7. It is worth noting that the peak value

for parabolic escape occurs just before t = T/2. This is expected, as the gravitational pull along

the z-axis of the planar orbit cannot be maximized at T/2 if q = 0.

Figure 9.7: The limit of S on the q = 0 plane approaching from q > 0. Here, θ is plotted on the
horizontal axis, and p is plotted on the vertical.

Let S+
0 denote the set of points shown in Figure 9.7. Owing to the time-reversing symmetry,

we can also find the orbits which achieve parabolic escape in reverse time by reflecting the set S+
0

across the line t = T . Denote the resulting set S−0 . This is shown in Figure 9.8.

The set of points in the region where S+
0 lies below S−0 (T/2< t < T ) denotes initial conditions

with q = 0 for which an orbit escapes hyperbolically in reverse time but returns at least once to

the q = 0 plane in forward time. Similarly, points lying below S+
0 but above S−0 (0 < t < T/2)
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Figure 9.8: Figure 9.7 (darker), with the reverse-time parabolic escape orbit curve overlaid
(lighter).

escape hyperbolically in forward time, but eventually return to q = 0 in reverse time. Points on

either curve that lie above the other escape parabolically in either forward or reverse time, and

hyperbolically in the other. The intersections of the two curves, which occur at t = 0 and t = T/2,

correspond to the orbits which escape parabolically in both forward and reverse time.

We can observe more complicated behavior by integrating points that lie below the S+
0 curve

and observing their next intersection with the q = 0 plane. Numerically, this can be slightly prob-

lematic, as behaviors near q=∞ or Q= 0 involve high-order powers of very small terms. However,

certain points far below S+
0 present no such problem. We show the results of one such integration

in Figure 9.9. (It is worth noting that, strictly speaking, the starred points should have p < 0. How-

ever, since φt is symmetric with respect to (q, p,θ) 7→ (−q,−p,θ), an image similar to Figure 9.8

exists in the q = 0, p < 0 half-plane, and so we may consider the starred points in Figure 9.9 as the

image of the corresponding points with p < 0.)

An interesting behavior is observed at the intersection of the curve of starred points and S+
0 .

This is another orbit that escapes parabolically in both forward and reverse time, but the number

125



www.manaraa.com

Figure 9.9: The indicated set of points on S−0 integrated until they return to the q = 0 plane. The
image under φt is denoted by the starred points.

of crossings through q = 0 varies. In this case, the forward-time orbit does not return to q = 0, but

the reverse time orbit returns exactly once. Hence, this orbit connects a parabolic escape orbit at

q = ∞ to a parabolic escape orbit at q = ∞ that passes through q = 0 exactly twice. In the p < 0

portion of the plane, the same phenomenon occurs, with an orbit connecting q =−∞ to itself.

Again, due to the time-reversing symmetry, we obtain for free the result of the reverse-time

image of the corresponding points on S+
0 . The results are shown in Figure 9.10. Here, again, a new

phenomenon occurs, with the intersection of the two starred curves, near the point (T/2,3/2). This

point crosses q = 0 exactly once in forward and backward time, and then escapes parabolically.

Hence, there is a parabolic orbit connecting q = −∞ to q = ∞ and which passes through q = 0

exactly thrice.

9.5.3 A Configuration with Collision Singularities away from the Origin. In this section,

we consider the planar orbit discussed in a series of papers ([26], [27], [28] and [29], see also [30])

that features simultaneous binary collisions away from the origin. Four bodies, each of mass m= 1,

initially lie on the coordinate axes. Their initial velocities are perpendicular to the coordinate axes

and equal in magnitude, leading to collisions as shown in Figure 9.11. It is shown in [26] that
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Figure 9.10: The symmetric image showing forward-time images of some points in S−0 and reverse-
time images of some points in S+

0 .

the orbit exists as pictured, and is symmetric through rotation through the angle π. Moreover,

the collisions in the orbit are regularizable. The regularization of the collisions of the four bodies

involves changes in spatial coordinates, as well as a time change of the form dt̂/dt = u(x,y).

The net effect of all of these changes is that the velocities of the four bodies is finite in the new

coordinate frame, so the orbit may be continued past collision.

We may adapt the motion of the massless particle by performing the same time change on q

and p, namely:

˙̂q =
dt̂
dt

q̇, ˙̂p =
dt̂
dt

ṗ.

Similar transformations can be made to obtain inverted coordinates ˙̂Q and ˙̂P. Then, replacing the

time variable t by the fictional time variable τ, we obtain an equivalent system without singularities

for the planar configuration and the massless particle. Specifically, the curves traced in R4 by

(x(t),y(t),q(t), p(t)) and (x(t̂),y(t̂),q(t̂), p(t̂) are identical as sets of points, and differ only in

the parameterization. Hence, we can perform our analysis in the regularized setting without any

difficulty.

Placing the planar bodies at (±1,0) and (0,±1) with appropriate initial velocities yields a
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Figure 9.11: The simultaneous binary collision orbit featured in Section 9.5.3. At all times, the
four bodies lie at positions (x,y), (y,x), (−x,−y), and (−y,−x). Collisions occur along the lines
y = x and y =−x.

planar orbit with period t̂ ≈ 6.4848. Moreover, by the symmetry shown in Figure 9.11, we have

that r1 = r2 = r3 = r4 for all time. For the first half of the period, we have all four bodies lying

in the first and third quadrants, returning to the coordinate axes at the end of the interval. Then,

over the second half, the four bodies lie in the second and fourth coordinates, repeating the same

behavior up to reflection across either coordinate axis. Hence, each of the functions ri is periodic

with period T ≈ 3.2424, as reflection across the coordinate axes does not change radial distance.

Figure 9.12 shows the result of repeating the numerical work as in Section 9.5.2. The central

gap corresponds to the interval of time containing the collision. At this time, the value of dt̂/dt

approaches zero, lengthening a momentary t-interval to a longer t̂-interval. It is also important to

note that the vertical scale is quite small, so the two curves are actually quite close to each other.

For this reason, performing further numerical integration to obtain a figure similar to Figure 9.10

is problematic.
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Figure 9.12: The q = 0 image corresponding to Figure 9.8 for the orbit of Section 9.5.3. Fictional-
ized time t̂ lies on the horizontal axis, with p on the vertical. T ≈ 3.2424.

9.5.4 The e = 1 Sitnikov Orbit, or the Restricted Rhomboidal Problem. As mentioned in

the introduction, this work was the result of studying the Rhomboidal configuration as one pair

of masses approaches m = 0. When m = 0, we have a collinear two-body configuration with

collisions, and a pair of massless particles that are symmetric across the collinear configuration.

Since the two massless particles have no influence over each other, removing one does not change

the overall dynamics. In this setting, we have the Sitnikov problem with e = 1. For this, the

solution of the planar orbit can be given explicitly, in both regularized and standard coordinates.

In regularized time, we have that

r1(t̂) = r2(t̂) =

∣∣∣∣∣
√

2
2

sin
(

t̂
2

)∣∣∣∣∣ .
(This result comes from explicitly solving the regularized system presented in Chapter 2). This is

2π-periodic in t̂. Since ri = 0 for certain values of t̂, Theorem 9.10 does not apply. We expect to

see asymptotic “spikes” in the q = 0 plane corresponding to the times at which ri = 0. Carrying

out the same numerical studies as previous sections gives the result shown in Figure 9.13.

We can again produce the first-return map for the points corresponding to reverse-time parabolic

orbit lying in θ > T/2. In this instance, it is numerically feasible to perform this calculation for
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Figure 9.13: The q = 0 image corresponding to Figure 9.8 for the orbit of Section 9.5.4. Fictional-
ized time t̂ lies on the horizontal axis, with p on the vertical. T = 2π.

nearly all such points. Prior to reduction mod T , asymptotic spikes appear at values of θ = nT for

integer values of n. These are visible in Figure 9.14.

If we choose the interval θ ∈ [T,2T ] and overlay the corresponding points with Figure 9.13

(along with their reverse-time counterparts), we obtain the result shown in Figure 9.15. We could,

of course, overlay any of the intervals [nT,(n+ 1)T ] and get a similar picture. In this case, the

intersection of the return curves would correspond to orbits which escape parabolically in forward

and reverse time, and cross through the q = 0 plane three times. By appropriate choice of n, we

could specify an arbitrary number of periods through which the planar orbit passes between each

of these three returns.

We could continue in similar fashion to obtain connecting parabolic orbits passing through q =

0 arbitrarily many times, with any finite integer sequence of periods completed between returns.

It may be the case that the return times do not occur at exact integer multiples of the period, but

counting only completed periods (e.g. counting collisions in the case of Sections 9.5.3 and 9.5.4)

provides a more precise interpretation.
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Figure 9.14: The q = 0 image corresponding to forward iteration of the “parabolic in reverse time”
points lying below the “parabolic in forward time” curve, prior to reduction mod T . Fictionalized
time t̂ lies on the horizontal axis, with p on the vertical. T = 2π.

9.6 CONCLUDING REMARKS

9.6.1 Future Research. There are a few questions that we believe warrant further exploration.

The foremost is the following:

Open Question 1. Is S anything more than C0? To what degree is this connected to the functions

ri?

For example, the functions ri of Sections 9.5.3 and 9.5.4 are merely continuous, with cusps at

each collision time, whereas those of Section 9.5.2 are at least C∞. Intuitively, we would expect

this to cause a difference in the resulting surfaces S corresponding to each orbit.

Open Question 2. Do the symbolic dynamics discussed in Section 9.5.4 hold for all orbits?

We would expect that near the points in the q = 0 plane where forward- and reverse-time

parabolic orbits intersect that there are return orbits with arbitrarily long return times. Since the

planar orbits are periodic, this gives that an arbitrary number of periods can occur before the

massless particle returns to the origin. The precise details of how these return regions overlap,

however, will require much more work.
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Figure 9.15: Analogue of Figure 9.10 for the orbit of Section 9.5.4. T = 2π.

APPENDIX A. A NUMERICAL ALGORITHM FOR FINDING PERIODIC ORBITS

The numerical determination of the initial conditions for all of the periodic orbits in this work all

follow the same general technique. We will describe the algorithm in terms of the rhomboidal orbit

of Chapter 8.

We restrict ourselves to the two-degrees-of-freedom case by setting Q2 = Q3 = P2 = P3 = 0

(e.g. remaining in A). We model each of Q1,Q4,P1, and P4 by truncated trigonometric polynomi-

als:

Q̃1 =
n

∑
i=0

ai sin((2i+1)s), (A.1)

Q̃4 =
n

∑
i=0

bi sin((2i+1)(s+π/2)), (A.2)

P̃1 =
n

∑
i=0

ci sin((2i+1)(s−π/2)), (A.3)

P̃4 =
n

∑
i=0

di sin((2i+1)s). (A.4)

The choice of trigonometric polynomials is natural for modeling periodic behavior. A similar

technique was carried out by Simó in [4]. The time shifts and choice of odd-only multiples of

132



www.manaraa.com

s correspond to symmetries of the orbit. In particular, for these polynomials, the time-reversing

symmetries shown earlier are built-in, and the non-colliding bodies have zero net momentum at

collision time. For a fixed n, we numerically minimize the value of

∫ 2π

0

(
(Q′1− Q̃′1)

2 +(Q′4− Q̃′4)
2 +(P′1− P̃′1)

2 +(P′4− P̃′4)
2) ds

where the minimization is taken over the space of coefficients {ai,bi,ci,di}, and the non-approximated

Qi and Pi are evaluated at the approximated value. (Intuitively, this is a least-squares curve fit for

the vector field determined by the differential equations.) We combine this with a root-finding tech-

nique to find the appropriate value of E for a 2π-periodic orbit. Once these trigonometric polyno-

mials are determined, we can extract the initial conditions for the orbit by evaluating Q̃1, Q̃4, P̃1, P̃4

at any fixed time s ∈ [0,2π].

To obtain initial conditions for an interval of values of m, a “brute force” search for the first

value must be performed first (unless initial conditions are available via some other technique). Af-

ter that, a gradual “step-down” technique can be used to find the initial conditions for other nearby

values of m ∈ (0,1], using the known values of the coefficients and E as an initial approximation.
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